Advertisement

Russian Journal of Applied Chemistry

, Volume 80, Issue 8, pp 1289–1294 | Cite as

Use of potassium permanganate as a possible kinetic standard in thermal analysis

  • B. V. L’vov
  • V. L. Ugolkov
Physicochemical Studies of Systems and Processes

Abstract

Analysis of the mechanism of congruent dissociative evaporation of solid substances led to a suggestion that potassium permanganate can be used as a possible kinetic standard in thermal analysis.

Keywords

Thermal Decomposition Apply Chemistry Decomposition Rate Molar Enthalpy Potassium Permanganate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flynn, J.H., Brown, M.E., and Šestak, J., Thermochim. Acta, 1987, vol. 110, pp. 101–112.CrossRefGoogle Scholar
  2. 2.
    Brown, M., Flynn, R.M., and Flynn, J.H., Thermochim. Acta, 2995, vol. 256, pp. 477–483.Google Scholar
  3. 3.
    L’vov, B.V., Termorazlozhenie tverdykh i zhidkikh veshchestv (Thermal Decomposition of Solid and Liquid Substances), St. Petersburg: Politekhn. Univ., 2006.Google Scholar
  4. 4.
    L’vov, B.V., Thermal Decomposition of Solids and Melts, Berlin: Springer, 2007.Google Scholar
  5. 5.
    L’vov, B.V. and Novichikhin, A.V., Thermochim. Acta, 1997, vol. 290, pp. 239–251.CrossRefGoogle Scholar
  6. 6.
    L’vov, B.V. and Ugolkov, V.L., Thermochim. Acta, 2004, vol. 411, pp. 73–79.CrossRefGoogle Scholar
  7. 7.
    Chevillot, P.E. and Edwards, W.E., Ann. Chim. Phys., 1817, vol. 4, pp. 287–297.Google Scholar
  8. 8.
    Rüdorf, G., Z. Anorg. Chem., 1901, vol. 27, pp. 58–61.CrossRefGoogle Scholar
  9. 9.
    Hinshelwood, C.N. and Bowen, E.J., Proc. Roy. Soc. A., 1921, vol. 99, pp. 203–212.CrossRefGoogle Scholar
  10. 10.
    Roginskii, S.Z., Zh. Fiz. Khim., 1938, vol. 12, pp. 427–444.Google Scholar
  11. 11.
    Prout, E.G. and Tompkins, F.C., Trans. Faraday Soc., 1944, vol. 40, pp. 488–498.CrossRefGoogle Scholar
  12. 12.
    Erofeev, B.V. and Smimova, I.I., Zh. Fiz. Khim., 1952, vol. 26, pp. 1233–1243.Google Scholar
  13. 13.
    Hill, R.A.W., Richardson, R.T., and Rodger, B.W., Proc. Roy. Soc., London, 1966, vol. A291, pp. 208–211.Google Scholar
  14. 14.
    Boldyrev, V.V., Voronin, A.P., Nevolina, T.A., and Marusin, V.V., Zh. Neorg. Khim., 1977, vol. 22, pp. 2179–2182.Google Scholar
  15. 15.
    Brown, M.E., Galwey, A.K., Mohamed, A.M., and Tanaka, H., Thermochim. Acta, 1994, vol. 235, pp. 255–270.CrossRefGoogle Scholar
  16. 16.
    Herbstein, F.H., Kapon, M., and Weissman, A., J. Therm. Anal., 1994, vol. 41, pp. 303–322.CrossRefGoogle Scholar
  17. 17.
    L’vov, B.V., Thermochim. Acta, 2004, vol. 424, pp. 183–199.CrossRefGoogle Scholar
  18. 18.
    L’vov, B.V., J. Therm. Anal. Calorim., 2005, vol. 79, pp. 151–156.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • B. V. L’vov
    • 1
    • 2
  • V. L. Ugolkov
    • 1
    • 2
  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations