Synthesis of Biaryl Derivatives of Spirofurochromanone in Water and Their Anticancer Activity
- 11 Downloads
Abstract
Biaryl derivatives of spirofurochromanones have been synthesised from 4-bromophenyl derivatives of spirofurochromanones upon catalysis by Pd/C in water. Structures of the synthesised compounds are derived from IR, NMR and HRMS spectral data. The compounds have been tested for in vitro cytotoxicity supported by docking studies.
Keywords
spirofurochromanone in vitro cytotoxic activity Suzuki couplingPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
We thank The Head, Department of Chemistry, Osmania University, Hyderabad for providing laboratory facilities. We also thank CFRD and IICT analytical team for providing spectral analytical facilities. Prof. D. Ashok is thankful to BSR.
Funding
This work was supported by UGC (University Grants Commission) as UGC-MRP, Project sanction letter no. F. 43-211/2014 (SR). New Delhi, and is gratefully acknowledged.
Conflict of Interest
No conflict of interest was declared by the authors.
References
- 1.Ashok, D., Madhuri, E. V. L., Sarasija, M., Sree Kanth, S., Vijjulatha, M., Malini, D.A., and Sagurthi, S.R., RSC Adv., 2017, vol. 7, p. 25710. https://doi.org/10.1039/c7ra01550j CrossRefGoogle Scholar
- 2.Alonso, F., Beletskaya, I.P., and Yus, Tetrahedron, 2008, vol. 64, p. 3047. https://doi.org/10.1016/j.tet.2007.12.036 CrossRefGoogle Scholar
- 3.Bellina, F., Carpita, A., and Rossi, R., Synthesis, 2004., vol. 15, p. 2419. https://doi.org/10.1055/s-2004-831223 Google Scholar
- 4.Kotha, S., Lahiri, K., and Kashinath, D., Tetrahedron, 2002, vol. 58, p. 9633. https://doi.org/10.1.1.621.9712 CrossRefGoogle Scholar
- 5(a).Lu, G., Franzn, R., Zhang, Q., and Xu, Y., Tetrahedron Lett., 2005, vol. 46, p. 4255. https://doi.org/10.1016/j.tetlet.2005.04.022 CrossRefGoogle Scholar
- 5(b).Arvela, R.K. and Leadbeater, N.E., Org. Lett., 2005, vol. 7, p. 2101. https://doi.org/10.1021/ol0503384.CrossRefGoogle Scholar
- 6.Chen, J.S., Vasiliev, A.N., Panarello, A.P., and Khinast, J.G., Appl. Catal. A: General, 2007, vol. 76, p. 325. https://doi.org/10.1016/j.apcata.2007.03.010 Google Scholar
- 7.Nicholas, E., Leadbeater, and Maria, M., J. Org. Chem., 2003, vol. 68, p. 888. https://doi.org/10.1021/jo0264022 CrossRefGoogle Scholar
- 8.Rohlich, C., Wirth, A.S., and Kohler, K., Chem.-Eur. J., 2012, vol. 18, p. 15485. https://doi.org/10.1002/chem.201201266 CrossRefGoogle Scholar
- 9.Mao, S.L., Sun, Y., Yu, G.A., Zhao, C., Han, Z.J., Yuan, J., Zhu, X.L., Yang, Q.H., and Liu, S.H., Org. Biomol. Chem., 2012, vol. 10, p. 9410. https://doi.org/10.1039/C2OB26463C CrossRefGoogle Scholar
- 10.Sourav, B., Chenggong, J., Joshua, E., Mayfield., Apollina G., Junyu X., Jack E.D., and Xing, G., Proc. Natl. Acad. Sci. USA, 2018, vol. 32 p. 8155. https://doi.org/10.1073/pnas.1806797115 Google Scholar
- 11.Becker, W., Weber, Y., Wetzel, K., Eirmbter, K., Tejedor, F.J., and Joost, H.G., J. Biol. Chem., 1998, vol. 40, p. 273. https://doi.org/10.1074/jbc.273.40.25893 Google Scholar
- 12.Schrodinger, LLC, 2010, New York, Ligprep, Glide 5.6Google Scholar
- 13.Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shaw, D.E., Shelley, M., Perry, J.K., Francis, P., and Shenkin, P.S., J. Med. Chem., 2004, vol. 47, p. 1739. https://doi.org/10.1021/jm0306430 CrossRefGoogle Scholar
- 14.Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., and Mainz, D.T., J. Med. Chem., 2006, vol. 49, p. 6177. https://doi.org/10.1021/jm051256o CrossRefGoogle Scholar