Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 2052–2056 | Cite as

Complexation of 2,3-Dimethyl-5-hydroxy-6-aminopyrimidin-4(3H)-one with Copper(II) Ions in Nonaqueous Solutions

  • V. Yu. Mishinkin
  • S. A. Grabovskii
  • N. N. Kabal’nova
  • Yu. I. MurinovEmail author
Article
  • 8 Downloads

Abstract

Complex formation of 2,3-dimethyl-5-hydroxy-6-aminopyrimidine-4(3H)-one with copper(II) ions in nonaqueous solutions has been studied by means of electron, NMR, and IR spectroscopy as well as mass spectrometry. Sequential formation of tetra- and pentacoordinated copper(II) complexes with mono- and bidentate ligand coordination has been observed. The complexes composition has been determined by spectrophotometry using the molar ratios method. Donor centers of the ligand involved in coordination with copper(II) ions have been determined, and the complexes formation constant have been calculated.

Keywords

2,3-dimethyl-5-hydroxy-6-aminopyrimidine-4(3H)-one tetracoordinate complexes pentacoordinate complexes copper(II) ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This study was performed in scope of the research at Ufa Institute of Chemistry, Russian Academy of Sciences (registration nos. AAAA-A17-117011910033-1, AAAA-A17-117011910035-5) using the equipment of the Center for Collective Usage “Chemistry” of Ufa Institute of Chemistry, Russian Academy of Sciences.

Conflict of Interest

No conflict of interest was declared by the authors.

References

  1. 1.
    Holm, R.H., Kennepohl, P., and Solomon, E.I., Chem. Rev., 1996, vol. 96, no. 7, p. 2239.  https://doi.org/10.1021/cr9500390 CrossRefGoogle Scholar
  2. 2.
    Bissaro, B., Røhr E.K., Müller, G., Chylenski, P., Skaugen, M., Forsberg, Z., Horn, S.J., Vaaje-Kolstad, G., and Eijsink, V.G., Nature Chem. Biol., 2017, vol. 13, p. 1123.  https://doi.org/10.1038/nchembio.2470 CrossRefGoogle Scholar
  3. 3.
    Chowdhury, B., Maji, M., and Biswas, B., J. Chem. Sci., 2017, vol. 129, no. 10, p. 1627.  https://doi.org/10.1007/s12039-017-1379-y CrossRefGoogle Scholar
  4. 4.
    Solomon, E.I., Heppner, D.E., Johnston, E.M., Ginsbach, J.W, Cirera, J., Qayyum, M., Kieber-Emmons, M.T., Kjaergaard, C.H., Hadt, R.G., and Tian, L., Chem. Rev., 2014, vol. 114, p. 3659.  https://doi.org/10.1021/cr400327t CrossRefGoogle Scholar
  5. 5.
    Liu, J.J., Diaz, D.E., Quist, D.A., and Karlin, K.D., Isr. J. Chem., 2017, vol. 56, nos. 9–10, p. 1.  https://doi.org/10.1002/ijch.201600025 Google Scholar
  6. 6.
    Ribeiro da Silva, M.A.V., Amaral, L.M.P.F., and Szterner, P., J. Chem. Thermodyn., 2011, vol. 43, p. 1763.  https://doi.org/10.1016/j.jct.2011.06.003 CrossRefGoogle Scholar
  7. 7.
    Murinov, Yu.I., Mishinkin, V.Yu., Akchurina, O.V., Grabovskii, S.A., and Kabal’nova, N.N., Russ. J. Gen. Chem., 2017, vol. 87, no. 8, p. 1667.  https://doi.org/10.1134/S1070363217080047 CrossRefGoogle Scholar
  8. 8.
    Mishinkin, V.Yu., Grabovskii, S.A., Kabal’nova, N.N., and Murinov, Yu.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 7, p. 1542.  https://doi.org/10.1134/S1070363217070167 CrossRefGoogle Scholar
  9. 9.
    Mishinkin, V.Yu., Grabovskii, S.A., Kabal’nova, N.N., and Murinov, Yu.I., Russ. J. Gen. Chem., 2019, vol. 89, no. 3, p. 405.  https://doi.org/10.1134/S107036321903006X CrossRefGoogle Scholar
  10. 10.
    Lever, A.B, Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984. 863 p.Google Scholar
  11. 11.
    Abbas, G., Mir, M., Hassan, A., Irfan, A., Mariya-Al-Rashida, and Wu, G., J. Struct. Chem., 2015, vol. 56, no. 1, p. 92.  https://doi.org/10.1134/S0022476615010138 CrossRefGoogle Scholar
  12. 12.
    Derrick, J.S., Kim, Y., Tak, H., Park, K., Cho, J., Kim, S.H., and Lim, M.H., Dalton Trans., 2017, vol. 46, p. 13166.  https://doi.org/10.1039/c7dt01489a CrossRefGoogle Scholar
  13. 13.
    Tordin, E., List, M., Monkowius, U., Schindler, S., and Knör, G., Inorg. Chim. Acta, 2013, vol. 402, p. 90.  https://doi.org/10.1016/j.ica.2013.03.034 CrossRefGoogle Scholar
  14. 14.
    Olshin, P.K., Myasnikova, O.S., Kashina, M.V., Gorbunov, A.O., Bogachev, N.A., Kompanets, V.O., Chekalin, S.V., Pulkin, S.A., Kochemirovsky, V.A., Skripkin, M.Yu., and Mereshchenko, A.S., Chem. Phys., 2018, vol. 503, p. 14.  https://doi.org/10.1016/j.chemphys.2018.01.020 CrossRefGoogle Scholar
  15. 15.
    Elleb, M., Meulemeestre, J., Schwing-Weill, M.-J., and Vierling, F., Inorg. Chem., 1982, vol. 21, p. 1477.  https://doi.org/10.1021/ic00134a042 CrossRefGoogle Scholar
  16. 16.
    Beck, M.T. and Nagypal, I., Chemistry of Complex Equilibria, Chichester: Ellis Horwood Limited, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. Yu. Mishinkin
    • 1
  • S. A. Grabovskii
    • 1
  • N. N. Kabal’nova
    • 1
  • Yu. I. Murinov
    • 1
    Email author
  1. 1.Ufa Institute of Chemistry, Ufa Federal Research CenterRussian Academy of SciencesUfaRussia

Personalised recommendations