Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 10, pp 1998–2004 | Cite as

Synthesis of Tetradecapentaenoic Acid Derivatives

  • A. O. Kolodyazhnaya
  • O. I. KolodyazhnyEmail author
Article
  • 12 Downloads

Abstract

A 12-stage method for the stereoselective synthesis of tetradecapentaenoic acid derivatives using phosphoric reagents was developed. The key step in the synthesis is the Z-selective Wittig reaction between sorbaldehyde and triphenylphosphonium (6-methoxycarbonyl)hexanilide, as well as the Ramirez-Corey-Fuchs reaction and the Trost-Kazmaier rearrangement. The synthesized (2E,4E,8Z,10E,12E)-N-isobutyltetradeca-2,4,8,10,12-pentaenamide corresponds to a natural compound called γ-Sanshoöl.

Keywords

Wittig reaction Horner-Emmons reaction Ramirez-Corey-Fuchs reaction Trost-Kazmaier rearrangement tetradecapentaenoic acid derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of Interest

No conflict of interest was declared by the authors.

References

  1. 1.
    Bader, M., Stark, T.D., Dawid, C., Lösch, S., and Hofmann, T., J. Agric. Food Chem., 2014, vol. 62, no. 12, p. 2479.  https://doi.org/10.1021/jf500399w CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Li, C.-H., Luo, B., Sun, Y.N., Kim, Y.H., Wei, A.-Z., and Gao, J.-M., Molecules, 2016, vol. 21, no. 10, p. 1416.  https://doi.org/10.3390/molecules21101416 CrossRefGoogle Scholar
  3. 3.
    Chrum, J.J., Cullen, D.J., Bowman, L., and Toy, P.H., Nat. Prod. Rep., 2018, vol. 35, no. 1, p. 54.  https://doi.org/10.1039/c7np00044h CrossRefGoogle Scholar
  4. 4.
    You, Y., Zhou, M., Lu, H., Shirima, G.G., Cheng, Y., and Liu, X., Food Sci. Biotechnol., 2015, vol. 24, no. 6, p. 2169.  https://doi.org/10.1007/s10068-015-0289-3 CrossRefGoogle Scholar
  5. 5.
    Crombie, L. and Fisher, D., Tetrahedron Lett., 1985, vol. 26, no. 20, p. 2481.  https://doi.org/10.1016/S0040-4039(00)94859-7 CrossRefGoogle Scholar
  6. 6.
    Crombie, L. and Fisher, D., Tetrahedron Lett., 1985, vol. 26, no. 20, p. 2477.  https://doi.org/10.1016/S0040-4039(00)94858-5 CrossRefGoogle Scholar
  7. 7.
    Jang, K.H., Chang, Y.H., Kim, D.-D., Oh, K.-B., Oh, U., and Shin, J., Arch. Pharm. Res., 2008, vol. 31, no. 5, p. 569.  https://doi.org/10.1007/s12272-001-1194-5 CrossRefGoogle Scholar
  8. 8.
    Aoki, K., Igarashi, Y., Nishimura, H., Morishita, I., and Usui, K., Tetrahedron Lett., 2012, vol. 53, no. 45, p. 6000.  https://doi.org/10.1016/j.tetlet.2012.08.135 CrossRefGoogle Scholar
  9. 9.
    Mugnaini, C. and Corelli, F., Synthesis, 2016, vol. 48, no. 13, p. 2085.  https://doi.org/10.1055/s-0035-1561580 CrossRefGoogle Scholar
  10. 10.
    Kolodiazhna, A. and Kolodiazhnyi, O., Phosphorus, Sulfur, Silicon, Relat. Elem., 2018, vol. 193, no. 11, p. 1.  https://doi.org/10.1080/10426507.2018.1514404 Google Scholar
  11. 11.
    Corey, E.J. and Fuchs, P.L., Tetrahedron Lett., 1972, vol. 13, p. 3769.  https://doi.org/10.1016/S0040-4039(01)94157-7 CrossRefGoogle Scholar
  12. 12.
    Heravi, M.M., Asadi, S., Nazari, N., and Lashkariani, B.M., Curr. Org. Chem., 2015, vol. 19, no. 22, p. 2196.  https://doi.org/10.2174/1385272819666150619174010 CrossRefGoogle Scholar
  13. 13.
    Rezaei, H., Yamanoi, S., Chemla, F., and Normant, J.F., Org. Lett., 2000, vol. 4, no. 2, p. 419.  https://doi.org/10.1021/ol991117z CrossRefGoogle Scholar
  14. 14.
    Trost, B.M. and Kazmaier, U., J. Am. Chem. Soc., 1992, vol. 114, no. 20, p. 7933.  https://doi.org/10.1021/ja00046a062 CrossRefGoogle Scholar
  15. 15.
    Tidwell, T.T., Org. React., 1990, vol. 39, p. 297.  https://doi.org/10.1002/0471264180.or039.03 Google Scholar
  16. 16.
    Parikh, J.R. and Doering, W.V.E., J. Am. Chem. Soc., 1967, vol. 89, no. 21, p. 5505.  https://doi.org/10.1021/ja00997a067 CrossRefGoogle Scholar
  17. 17.
    Kolodiazhnyi, O.I., Phosphorus Ylides. Chemistry and Application in Organic Synthesis, Weinheim: J. Wiley-VCH, 1999.CrossRefGoogle Scholar
  18. 18.
    Xia, X. and Toy, P.H., Synlett, 2014, vol. 25, no. 19, p. 2787.  https://doi.org/10.1055/s-0034-1379215 CrossRefGoogle Scholar
  19. 19.
    Carpino, L.A., J. Am. Chem. Soc., 1993, vol. 115, no. 10, p. 4397.  https://doi.org/10.1021/ja00063a082 CrossRefGoogle Scholar
  20. 20.
    Yasuda, I., Takeya, K., and Itokawa, H., Chem. Pharm. Bull., 1981, vol. 2, no. 6, p. 1791.  https://doi.org/10.1248/cpb.29.1791 CrossRefGoogle Scholar
  21. 21.
    Cushman, M., Casimiro-Garcia, A., Williamson, K., and Rice, W.G., Bioorg. Med. Chem. Lett., 1998, vol. 8, no. 2, p. 195.  https://doi.org/10.1016/S0960-894X(97)10214-1 CrossRefGoogle Scholar
  22. 22.
    Bestmann, H.J., Stransky, W., and Vostrowsky, O., Chem. Ber., 1976, vol. 109, no. 5, p. 1694  https://doi.org/10.1002/cber.19761090513 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of UkraineKievUkraine

Personalised recommendations