Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 7, pp 1368–1376 | Cite as

Synthesis and Study of Antimicrobial Activity of Water-Soluble Ammonium Acylhydrazones Based on New 1,ω-Alkylenebis(isatins)

  • A. V. BogdanovEmail author
  • I. F. Zaripova
  • L. K. Mustafina
  • A. D. Voloshina
  • A. S. Sapunova
  • N. V. Kulik
  • V. F. Mironov
Article

Abstract

Alkylation of isatin with 1,ω-dihaloalkanes afforded bis(heterocycles) connected by an oligomethylene linker. The reaction of the resulting bis(isatins) with Girard’s T and Girard’s P reagents led to the formation of symmetrical water-soluble acyl hydrazones with high yields. Evaluation of antimicrobial activity of new compounds showed the dependence of the activity level on the hydrocarbon spacer length. The selective activity of nona- and decamethylene derivatives was established with respect to gram-positive bacteria S. aureus 209p and B. cereus 8035. Low hematotoxicity of the obtained heterocycles was revealed.

Keywords

isatin hydrazones hydrazides antimicrobial activity pyridinium salts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the Center for Collective Use of the Spectral and Analytical Center of the Federal Research Center “Kazan Research Center of the Russian Academy of Sciences” for the technical support of the research.

References

  1. 1.
    Borad, M.A., Bhoi, M.N., Prajapati, N.P., and Patel, H.D., Synth. Commun., 2014, vol. 44, p. 1043. doi  https://doi.org/10.1080/00397911.2013.858361 CrossRefGoogle Scholar
  2. 2.
    Singh, G.S. and Desta, Z.Y., Chem. Rev., 2012, vol. 112, p. 6104. doi  https://doi.org/10.1021/cr300135y CrossRefGoogle Scholar
  3. 3.
    Moradi, R., Ziarani, G.M., and Lashgari, N., Arkivoc, 2017, vol. 1, p. 148. doi  https://doi.org/10.3998/ark.5550190.p009.980 CrossRefGoogle Scholar
  4. 4.
    Bogdanov, A.V and Zaripova, I.F., Chem. Heterocycl. Compd., 2018, vol. 54, p. 686. doi  https://doi.org/10.1007/s10593-018-2331-x CrossRefGoogle Scholar
  5. 5.
    Musin, L.I., Bogdanov, A.V., and Mironov, V.F., Chem. Heterocycl. Compd., 2015, vol. 51, p. 421. doi  https://doi.org/10.1007/s10593-015-1717-2 CrossRefGoogle Scholar
  6. 6.
    Rudrangi, Sh.R.S., Bontha, V.K., Manda, V.R., and Bethi, S., Asian J. Res. Chem., 2011, vol. 4, p. 335.Google Scholar
  7. 7.
    Saraswat, P., Jeyabalan, G., Hassan, M.Z., Rahman, M.U., and Nyola, N.K., Synth. Commun., 2016, vol. 46, p. 1643. doi  https://doi.org/10.1080/00397911.2016.1211704 CrossRefGoogle Scholar
  8. 8.
    Design of Hybrid Molecules for Drug Development, Decker, M., Ed., Amsterdam: Elsevier, 2017.Google Scholar
  9. 9.
    Vine, K.L., Matesic, L., Locke, Ju.M., and Skropeta, D., Adv. Anticancer Agents Med. Chem., 2013, vol. 2, p. 254. doi  https://doi.org/10.2174/97816080549611130201 CrossRefGoogle Scholar
  10. 10.
    Hou, J., Jin, K., Li, J., Jiang, Yu., Li, X., Wang, X., Huang, Y., Zhang, Y., and Xu, W., Anti-Cancer Drugs, 2016, vol. 27, p. 496. doi  https://doi.org/10.1097/CAD.0000000000000351 CrossRefGoogle Scholar
  11. 11.
    Xua, Zh., Zhang, Sh., Gao, Ch., Fan, J., Zhao, F., Lv, Z.-Sh., and Feng, L.-Sh., Chin. Chem. Lett., 2017, vol. 28, p. 159. doi  https://doi.org/10.1016/j.cclet.2016.07.032 CrossRefGoogle Scholar
  12. 12.
    Chadha, N. and Silakari, O., Eur. J. Med. Chem, 2017, vol. 134, p. 159. doi  https://doi.org/10.1016/j.ejmech.2017.04.003 CrossRefGoogle Scholar
  13. 13.
    Zhang, G.-F., Liu, X., Zhang, Sh., Pan, B., and Liu, M.-L., Eur. J. Med. Chem, 2018, vol. 146, p. 599. doi  https://doi.org/10.1016/j.ejmech.2018.01.078 CrossRefGoogle Scholar
  14. 14.
    Bogdanov, A.V., Musin, L.I., and Mironov, V.F., Arkivoc, 2015, vol. 6, p. 362. doi  https://doi.org/10.3998/ark.5550190.p009.090 Google Scholar
  15. 15.
    Millemaggi, A. and Taylor, R.J.K., Eur. J. Org. Chem., 2010, no. 24, p. 4527. doi  https://doi.org/10.1002/ejoc.201000643
  16. 16.
    Kumar, S., Saha, S.T., Gu, L., Palma, G., Perumal, Sh., Singh-Pillay, A., Singh, P., Anand, A., Kaur, M., and Kumar, V., ACS Omega, 2018, vol. 3, p. 12106. doi  https://doi.org/10.1021/acsomega.8b01513 CrossRefGoogle Scholar
  17. 17.
    Martelli, G. and Giacomini, D., Eur. J. Med. Chem., 2018, vol. 158, p. 91. doi  https://doi.org/10.1016/j.ejmech.2018.09.009 CrossRefGoogle Scholar
  18. 18.
    Jaiswal, Sh., Tripathi, R.K.P., and Ayyannan, S.R., Biomed. & Pharmacother., 2018, vol. 107, p. 1611. doi  https://doi.org/10.1016/j.biopha.2018.08.125 CrossRefGoogle Scholar
  19. 19.
    Eldehna, W.M., Almahli, H., Al-Ansary, Gh.H., Ghabbour, H.A., Aly, M.H., Ismael, O.E., Al-Dhfyan, A., and Abdel-Aziz, H.A., J. Enzyme Inhib. Med. Chem., 2017, vol. 32, p. 600. doi  https://doi.org/10.1080/14756366.2017.1279155 CrossRefGoogle Scholar
  20. 20.
    Rane, R.A., Karunanidhi, S., Jain, K., Shaikh, M., Hampannavar, G., and Karpoormath, R., Curr. Top. Med. Chem., 2016, vol. 16, p. 1262. doi  https://doi.org/10.2174/1568026615666150915112334 CrossRefGoogle Scholar
  21. 21.
    Hu, Yu.-Q., Song, X.-F., and Fan, J., J. Heterocycl. Chem., 2018, vol. 55, p. 265. doi  https://doi.org/10.1002/jhet.3042 CrossRefGoogle Scholar
  22. 22.
    Deng, J.-L., Liu, X.-Ch., Cai, G.-W., Zhang, G., Hu, L., Qiu, L., Li, Z.-Y., and Xu, Zh., J. Heterocycl. Chem., 2018, vol. 55, p. 1509. doi  https://doi.org/10.1002/jhet.3186 CrossRefGoogle Scholar
  23. 23.
    Hua, X., Zhang, G., Zhang, D., and Wu, Y., J. Heterocycl. Chem., 2018, vol. 55, p. 1504. doi  https://doi.org/10.1002/jhet.3185 CrossRefGoogle Scholar
  24. 24.
    Xu, Y., Guan, J., Xu, Zh., and Zhao, Sh., Fitoterapia, 2018, vol. 127, p. 383. doi  https://doi.org/10.1016/j.fitote.2018.03.018 CrossRefGoogle Scholar
  25. 25.
    Jain, R., Gahlyan, P., Dwivedi, S., Konwar, R., Kumar, S., Bhandari, M., Arora, R., Kakkar, R., Kumar, R., and Prasad, A.K., Chemistry Select, 2018, vol. 3, p. 5263. doi  https://doi.org/10.1002/slct.201800420 Google Scholar
  26. 26.
    Li, W., Zhao, Sh.-J., Gao, F., Lv, Z.-Sh., Tu, J.-Y., and Xu, Zh., Chemistry Select, 2018, vol. 3, p. 10250. doi  https://doi.org/10.1002/slct.201802185 Google Scholar
  27. 27.
    Singh, A., Nisha, Bains, T., Hahn, H.J., Liu, N., Tam, Ch., Cheng, L.W., Kim, J., Debnath, A., Land, K.M., and Kumar, V., Med. Chem. Commun., 2017, vol. 8, p. 1982. doi  https://doi.org/10.1039/c7md00434f CrossRefGoogle Scholar
  28. 28.
    Parthasarathy, K., Praveen, Ch., Saranraj, K., Balachandran, C., and Senthil Kumar, P., Med. Chem. Res., 2016, vol. 25, p. 2155. doi  https://doi.org/10.1007/s00044-016-1645-4 CrossRefGoogle Scholar
  29. 29.
    Parthasarathy, K., Praveen, Ch., Jeyaveeran, J.C., and Prince, A.A.M., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 4310. doi  https://doi.org/10.1016/j.bmcl.2016.07.036 CrossRefGoogle Scholar
  30. 30.
    Sahoo, S., Mahendrakumar, C.B., and Setty, C.M., Int. J. Chem. Sci., 2015, vol. 13, p. 613.Google Scholar
  31. 31.
    Akhtar, R., Yousaf, M., Naqvi, S.A.R., Irfan, M., Zahoor, A.F., Hussain, A.I., and Chath, Sh.A.Sh., Synth. Commun., 2016, vol. 46, p. 1849. doi  https://doi.org/10.1080/00397911.2016.1234622 CrossRefGoogle Scholar
  32. 32.
    Zahoor, A.F., Yousaf, M., Siddique, R., Ahmad, S., Naqvi, S.A.R., and Rizvi, S.M.A., Synth. Commun., 2017, vol. 47, p. 1021. doi  https://doi.org/10.1080/00397911.2017.1300921 CrossRefGoogle Scholar
  33. 33.
    Bogdanov, A.V., Gil’fanova, A.R., Zaripova, I.F., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 124. doi  https://doi.org/10.1134/S1070363218010206 CrossRefGoogle Scholar
  34. 34.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 57. doi  https://doi.org/10.1134/S1070363218010097 CrossRefGoogle Scholar
  35. 35.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Khamatgalimov, A.R., and Mironov, V.F., Monatsh. Chem., 2018, vol. 149, p. 111. doi  https://doi.org/10.1007/s00706-017-2049-y CrossRefGoogle Scholar
  36. 36.
    Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Voronina, Ju.K., and Mironov, V.F., Chem. Biodiversity, 2018, vol. 15, p. 1800088. doi  https://doi.org/10.1002/cbdv.201800088 CrossRefGoogle Scholar
  37. 37.
    Rahmati, A. and Khalesi, Z., Tetrahedron, 2012, vol. 68, p. 8472. doi  https://doi.org/10.1016/j.tet.2012.07.073 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Bogdanov
    • 1
    Email author
  • I. F. Zaripova
    • 1
  • L. K. Mustafina
    • 1
  • A. D. Voloshina
    • 1
  • A. S. Sapunova
    • 1
  • N. V. Kulik
    • 1
  • V. F. Mironov
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific CenterRussian Academy of ScienceKazan, TatarstanRussia

Personalised recommendations