Advertisement

Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 330–338 | Cite as

Structural Characterization and Second-Order Nonlinear Optical Behavior of Metal Complexes of Ferrocene Derivative

  • P. DeveciEmail author
  • B. Taner
  • E. Özcan
  • Z. Kılıç
  • M. Karakaya
  • A. Karakas
Article
  • 11 Downloads

Abstract

In this manuscript, a ferrocene-linked vic-dioxime ligand (LH2) and its metal complexes [Ni(LH)2, Cu(LH)2, Co(LH)2(H2O)2, Cd(LH)(H2O)(Cl), and Zn(LH)(H2O)(Cl)] are synthesized, and their structures are studied by spectral methods. Redox behavior of the compounds is studied by cyclic voltammetry (CV). For approaching microscopic second-order nonlinear optical (NLO) behavior of the synthesized ligand and its diamagnetic Cd(II), Zn(II), Ni(II) complexes, the electric dipole moment μ, static dipole polarizability α, and first hyperpolarizability β values are computed using ab-initio quantum chemical procedure [finite field (FF)]. The accumulated data indicate that the compounds exhibit non-zero quadratic hyperpolarizability tensor components, implying microscopic NLO phenomena. The HOMOs, LUMOs and the HOMO—LUMO band gaps for first and second frontier orbitals of LH2 ligand and its Cd(II), Zn(II), Ni(II) complexes are evaluated by means of the Hartree-Fock (HF) method.

Keywords

metal complex redox property ferrocene nonlinear optics finite field HOMO—LUMO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silva, P.A., Maria, T.M.R., Nunes, C.M., Eusébio, M.E.S., and Fausto, R., J. Mol. Struct., 2014, vol. 1078, p. 90. doi 10.1016/j.molstruc.2013.12.031CrossRefGoogle Scholar
  2. 2.
    Gupta, S.R., Mourya, P., Singh, M.M., and Singh, V.P., J. Organomet. Chem,. 2014, vol. 767, p. 136. doi 10.1016/j.jorganchem.2014.05.038Google Scholar
  3. 3.
    Paitandi, R.P., Gupta, R.K., Singh, R.S., Sharma, G., Koch, B., and Pandey, D.S., Eur. J. Med. Chem., 2014, vol. 84, p. 17. doi 10.1016/j.ejmech.2014.06.052CrossRefGoogle Scholar
  4. 4.
    Chinnadayyala, S.R., Kakoti, A., Santhosh, M., and Goswami, P., Biosen. Bioelectron., 2014, vol. 55, p. 120. doi 10.1016/j.bios.2013.12.005CrossRefGoogle Scholar
  5. 5.
    Dervisevic, M., Dervisevic, E., Senel, M., Cevik, E., Yildiz, H.B., and Camurlu, P., Enzyme Microb. Tech., 2017, vol. 102, p. 53. doi 10.1016/j.enzmictec.2017.04.002CrossRefGoogle Scholar
  6. 6.
    Rabti, A., Mayorga-Martinez, C.C., Baptista-Pires, L., Raouafi, N., and Merkoçi, A., Anal. Chim. Acta, 2016, vol. 926, p. 28, 10.1016/j.aca.2016.04.010CrossRefGoogle Scholar
  7. 7.
    Zhu, P., Kan, L., Han, X., Feng, J., Jia, J., and Zhang, X., Dyes Pigments, 2015, vol. 113, p. 55. doi 10.1016/j.dyepig.2014.07.009CrossRefGoogle Scholar
  8. 8.
    Congiu, M., Nunes-Neto, O., De Marco, M.L., Dini, D., and Graeff, C.F.O, Thin Solid Films, 2016, vol. 612, p. 2. doi 10.1016/j.tsf.2016.05.033CrossRefGoogle Scholar
  9. 9.
    Wua, Y., Kashia, M.B., Yanga, Y., Gonçalesa, V.R., Ciampid, S., Tilleya, R.D., and Gooding, J., Electrochim. Acta, 2016, vol. 213, p. 540. doi 10.1016/j.electacta.2016.07.120CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Chen, H., Zhao, X., Zhai, Q., Yina, D., Sunb, Y., and Li, J., Appl. Catal. B: Environ., 2016, vol. 193, p. 47. doi 10.1016/j.apcatb.2016.04.019CrossRefGoogle Scholar
  11. 11.
    Dixit, S., Siddiqui, Q.T., Muneer, M., and Agarwal, N., Tetrahedron Lett., 2016, vol. 57, p. 4228. doi 10.1016/j.tetlet.2016.08.020CrossRefGoogle Scholar
  12. 12.
    Mbaba, M., Mabhula, A.N., Boel, N., Edkins, A.L., Isaacs, M., Hoppeb, H.C., and Khanye, S.D., J. Inorg. Biochem., 2017, vol. 172, p. 88. doi 10.1016/j.jinorgbio.2017.04.014CrossRefGoogle Scholar
  13. 13.
    Moriuchi, T., Nishiyama, T., Tayano, Y., Tohnai, N., and Hirao, T., J. Organometal. Chem., 2017, vol. 839, p. 78. doi 10.1016/j.jorganchem.2017.01.005CrossRefGoogle Scholar
  14. 14.
    Matei, A., Constantinescu, C., Ion, V., Mitu, B., Ionita, I., Dinescu, M., Vasiliu, C., and Emandi, A., J. Organomet. Chem., 2014, vol. 751, p. 638. doi 10.1016/j.jorganchem.2013.10.056CrossRefGoogle Scholar
  15. 15.
    Kaur, S., Kaur, M., Kaur, P., Clays, K., and Singh, K., Coord. Chem. Rev., 2017, vol. 343, p. 185. doi 10.1016/j.ccr.2017.05.008CrossRefGoogle Scholar
  16. 16.
    Deveci, P. and Taner, B., Inorg. Chim. Acta, 2013, vol. 405, p. 326. doi 10.1016/j.ica.2013.06.012CrossRefGoogle Scholar
  17. 17.
    Harbeck, M., Şen, Z., Gümüş, G., Gürol, I., Musluoğlu, E., Öztürk, Z.Z., and Ahsen, V., Sens. Actuators B, 2013, vol. 188, p. 1004. doi 10.1016/j.snb.2013.08.014CrossRefGoogle Scholar
  18. 18.
    Musılova, L., Kuca, K., Jung, Y.S., and Jun, D., Clin. Toxicol, 2009, vol. 47, p. 545. doi 10.1080/15563650903058914CrossRefGoogle Scholar
  19. 19.
    Mokhir, A., Kraamer, R., Voloshin, Y.Z., and Varzatskii, O.A., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 2927. doi 10.1016/j.bmcl.2004.03.028CrossRefGoogle Scholar
  20. 20.
    Mandal, D. and Gupta, B.D., Organometal., 2006, vol. 25, p. 3305. doi 10.1021/om060357xCrossRefGoogle Scholar
  21. 21.
    Pantani, O., Anxolabehere-Mallart, E., Aukauloo, A., and Millet, P., Electrochem. Commun., 2007, vol. 9, p. 54. doi 10.1016/j.elecom.2006.08.036CrossRefGoogle Scholar
  22. 22.
    Moloney, J.V., Nonlinear Optical Materials, New York: Springer, 1998.CrossRefGoogle Scholar
  23. 23.
    Lednicer, D. and Hauser, C.R., Org. Synth., 1973, vol. 5, p. 434. doi 10.15227/orgsyn.040.0031Google Scholar
  24. 24.
    Lednicer, D. and Hauser, C.R., Org. Synth., 1973, vol. 5, p. 578.Google Scholar
  25. 25.
    Lednicer, D., Lindsay, J.K., and Hauser, C.R., J. Org. Chem., 1958, vol. 23, p. 653. doi 10.1021/jo01099a700CrossRefGoogle Scholar
  26. 26.
    Cavallini, G., Massarani, E., Nardi, D., Mauri, L., Tenconi, F., Pacchiano, P., and Mantegazza, P., J. Med. Chem., 1963, vol. 6, p. 573CrossRefGoogle Scholar
  27. 27.
    Coşkun, A., Yılmaz, F., and Akgemci, E.G., J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 60, p. 393. doi 10.1007/s10847-007-9389-xCrossRefGoogle Scholar
  28. 28.
    Kurtz, H.A., Stewart, J.P.P., and Dieter, K.M., J. Comput. Chem., 1990, vol. 11, p. 82. doi 10.1002/jcc.540110110CrossRefGoogle Scholar
  29. 29.
    Stevens, W., Basc, H., and Krauss, J., J. Chem. Phys., 1984, vol. 81, p. 6026. doi 10.1063/1.447604CrossRefGoogle Scholar
  30. 30.
    Cundari, T.R. and Stevens, W.J., J. Chem. Phys., 1993, vol. 98, p. 5555. doi 10.1063/1.464902CrossRefGoogle Scholar
  31. 31.
    Frisch, M.J., Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  32. 32.
    Bogaard, M.P. and Orr, B.J., MTP International Review of Science, Buckingham, A.D., Ed., London: Butterworths, 1975, vol. 2, p. 149.Google Scholar
  33. 33.
    Thanthiriwatte, K.S. and de Nalin, K.M., J. Mol. Struct., 2002, vol. 617, p. 169. doi 10.1016/S0166-1280(02) 00419-0CrossRefGoogle Scholar
  34. 34.
    Yuksel, F., Gurek, A.G., Durmuş, M., Gurol, I, Ahsen, V., Jeanneau, E., and Luneau, D., Inorg. Chim. Acta, 2008, vol. 361, p. 2225. doi 10.1016/j.ica.2007.11.019CrossRefGoogle Scholar
  35. 35.
    Kandaz, M. and Katmer, O., Trans. Met. Chem., 2006, vol. 31, p. 889.CrossRefGoogle Scholar
  36. 36.
    Shaabani, B. and Shaghaghi, Z., Appl. Organomet. Chem., 2011, vol. 25, p. 317. doi 10.1002/aoc.1761CrossRefGoogle Scholar
  37. 37.
    Karipçin, F., Dede, B., Percin Özkorucuklu, S., and Kabalcilar, E., Dyes Pigments, 2010, vol. 84, p. 14. doi 10.1016/j.dyepig.2009.06.010CrossRefGoogle Scholar
  38. 38.
    Uçar, A., Deveci, P., Taner, B., Fındık, M., Bereket, S., Özcan, E., and Solak, A.O., J. Coord. Chem., 2010, vol. 63, p. 3083. doi 10.1080/00958972.2010.504259CrossRefGoogle Scholar
  39. 39.
    Çamur, M., Bulut, M., Ozkaya, A.R., Kandaz, M., and Yaylı, N., Trans. Met. Chem., 2007, vol. 32, p. 642.CrossRefGoogle Scholar
  40. 40.
    Isse, A.A., Gennaro, A, and Vianello, E., Electrochim. Acta, 1997, vol. 42, p. 2065. doi 10.1016/S0013-4686 (97)85482-5CrossRefGoogle Scholar
  41. 41.
    Wu, D., Xiao, L., Shi, Y., Zhang, Q, Du, W., Zhang, J., Li, S., Zhou, H., Wu, J., and Tian, Y., J. Organomet. Chem., 2017, vol. 830, p. 67. doi 10.1016/j.jorganchem.2016.12.012CrossRefGoogle Scholar
  42. 42.
    Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, New York: Wiley, 1991.Google Scholar
  43. 43.
    Nonlinear Optical Properties of Organic Molecules and Crystals, Chemla, D.S. and Zyss, J., Eds., New York: Academic Press, 1987.Google Scholar
  44. 44.
    Gorman, C.B. and Marder, S.R., Proceeding of the National Academy of Sciences of the United States of America, 1993, vol. 90, p. 11297.CrossRefGoogle Scholar
  45. 45.
    Liyanage, P.S., de Silva, R.M., and Nalin de Silva, K.M., J. Mol. Struct. (Theochem.), 2003, vol. 639, p. 195.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. Deveci
    • 1
    Email author
  • B. Taner
    • 1
  • E. Özcan
    • 1
  • Z. Kılıç
    • 2
  • M. Karakaya
    • 3
  • A. Karakas
    • 4
  1. 1.Department of ChemistrySelcuk University, Faculty of ScienceKonyaTurkey
  2. 2.Department of ChemistryAnkara University, Faculty of ScienceTandogan, AnkaraTurkey
  3. 3.Department of Energy SystemsSinop University, Faculty of Engineering and ArchitectureSinopTurkey
  4. 4.Department of PhysicsSelcuk University, Faculty of ScienceKonyaTurkey

Personalised recommendations