Russian Journal of General Chemistry

, Volume 89, Issue 2, pp 313–318 | Cite as

An Efficient Microwave Assisted Synthesis and Antimicrobial Activty of 1,2,3-Triazolyl-pyrrolidinyl-quinolinolines

  • M. Pradeep
  • M. Vishnuvardhan
  • V. Bala Krishna
  • R. Madhusudhan RajuEmail author


A novel series of 1,2,3-triazolyl-pyrrolidinyl-quinolinolines are synthesised by the Click reaction of alkynes with aromatic azides catalysed by CuI under microwave assisted and conventional conditions. All synthesized 1,2,3-triazoles are screened for their in vitro antimicrobial activity against different bacterial and fungal pathogens. Majority of the synthesized compounds demonstrate moderate to good inhibition zones compared to the standard drugs.


Vilsmeier—Haack reaction Claisen—Schmidt condensation Click reaction microwave irradiation antibacterial activity antifungal activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bing Wang, Qiangqiang Li, Wei Shi, Li Chen, and Jianbo Sun, Chem. Biol. Drug. Des., 2018, vol. 91, no. 4, p. 957. doi 10.1111/cbdd.13154Google Scholar
  2. 2.
    Ashok, D., Arram Ganesh, Vijaya Lakshmi, B. and Ravi, S., Russ. J. Gen. Chem., 2014, vol. 84, no. 6, p. 1237. doi 10.1134/S1070363214060309CrossRefGoogle Scholar
  3. 3.
    Bodke, Y.D., Shankerrao, S., Kenchappa R., and Telkar, S., Russ. J. Gen. Chem., 2017, vol. 87, no. 8, p. 1843. doi 10.1134/S1070363217080321CrossRefGoogle Scholar
  4. 4.
    Sandeep, J., Ajay, K., and Deepika, S., Exp. Parasitol., 2018, vol. 185, p. 107. doi 10.1111/cbdd.13154CrossRefGoogle Scholar
  5. 5.
    Hwang, D.J., Kim, S.N., Choi, J.H., and Lee, Y.S., Bioorg. Med. Chem., 2001, vol. 9, no. 6, p. 1429. doi 10.1111/cbdd.13154CrossRefGoogle Scholar
  6. 6.
    Arun, Y., Bhaskar, G., Balachandran, C., Ignacimuthu, S., and Perumal, P.T., Bioorg. Med. Chem. Lett., 2013, vol. 23(6), p. 1839. doi 10.1016/j.bmcl.2013.01.023Google Scholar
  7. 7.
    Mukovoz, P.P., Slepukhin, P.A., El’tsov, O.S., Ganebnykh, I.N., Gorbunova, A.V., Sizentsov, A.N., and Rusyaev, M.L., Russ. J. Gen. Chem., 2017, vol. 87, no. 10, p. 2291. doi 10.1134/S1070363217100085CrossRefGoogle Scholar
  8. 8.
    Ashok, D., Ganesh, Arram., Vijaya Lakshmi, B. and Ravi, S., and Ramesh, B., Org. Commun., 2014, vol. 8, no. 2, p. 24.Google Scholar
  9. 9.
    Ram Janam Singh, Rasayan J. Chem., 2009, vol. 2, no. 3, p. 706.Google Scholar
  10. 10.
    Ming-Xia Song and Xian-Qing Deng, J. Enz. Inhibition Med. Chem., 2018, vol. 33, p. 1453. doi 10.1080/14756366.2018.1512597CrossRefGoogle Scholar
  11. 11.
    Ashok Kumar, Sathish Kumar, B., Sreenivas, E., and Subbaiah, T., Russ. J. Gen. Chem., 2018, vol. 88, no. 3, p 587. doi 10.1134/S1070363218030313Google Scholar
  12. 12.
    Lazrek, H.B., Taourirte, M., Oulih, T., Barascut, J.L., Imbach, J.L., Pannecouque, C., Witrouw, M., and De Clercq, E., Nucleosides Nucleotides Nucleic Acids, 2001, vol. 20, no. 12, p. 1949. doi 10.1081/NCN-100108325CrossRefGoogle Scholar
  13. 13.
    Shaikh, M.H., Subhedar, D.D., Nawale, L., Sarkar, D., Kalam Khan, F.A., Sangshettic, J.N., and Shingate, B.B., Med. Chem. Commun., 2015, vol. 6, p. 1104. doi 10.1039/C5MD00057BCrossRefGoogle Scholar
  14. 14.
    (a) Ashok, D., Ganesh, Arram., Ravi, S., Vijaya Lakshmi, B., and Ramesh, B., Russ. J. Gen. Chem., 2014, vol. 84, no. 11, p. 2211. doi 10.1134/S1070363214110280CrossRefGoogle Scholar
  15. (b).
    Ashok, D., Ganesh, Arram., Vijaya Lakshmi, B., and Ravi, S., Russ. J. Gen. Chem., 2015, vol. 85, no. 9, p. 2141. 10.1134/S1070363215090194CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. Pradeep
    • 1
  • M. Vishnuvardhan
    • 1
  • V. Bala Krishna
    • 1
  • R. Madhusudhan Raju
    • 1
    Email author
  1. 1.Department of ChemistryOsmania UniversityHyderabad, TelanganaIndia

Personalised recommendations