Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 13, pp 2829–2836 | Cite as

Influence of Aryl-Substituted Xylose Derivatives on Fermentation of Antifungal Antibiotic Imbricin

  • E. P. Yakovleva
  • V. A. Kolodyaznaya
  • I. V. Boikova
  • V. V. BelakhovEmail author
Article
  • 6 Downloads

Abstract

The influence of aryl-substituted xylose derivatives on fermentation of nonmedical antifungal antibiotic imbricin was evaluated. It was shown that, though unsuitable as additional carbohydrate sources in the growth medium for microorganism-producer development, these compounds can be used as biosynthesis regulators stimulating the antibiotic production. Biological tests showed that the aryl-substituted xylose derivatives possess antibacterial activity and, when added to the initial fermentation medium, protect the imbricin fermentation process against possible contamination.

Keywords

fermentation regulation of antibiotic production biologically active substances imbricin xylose aryl-substituted sugars antibacterial activity contamination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid, R.D., Taschenatlas der Biotechnologie und Gentechnik, Weinheim: Wiley, 2006.Google Scholar
  2. 2.
    Chkhenkheli, V.A., Biotekhnologiya (Biotechnology), St. Petersburg: Prospekt Nauki, 2014, pp. 165–190.Google Scholar
  3. 3.
    Bykovskii, S.N. and Gusarova, D.A., “Krasnaya biotekhnologiya:” ot nauki k promyshlennosti (“Red Biotechnology:” from Science to Industry), Moscow: Pero, 2017.Google Scholar
  4. 4.
    Kovalenko, L.V., Biokhimicheskie osnovy khimii biologicheski aktivnykh veshchestv (Biochemical Principles of Chemistry of Bioactive Substances), Moscow: BINOM. Laboratoriya Znanii, 2010.Google Scholar
  5. 5.
    Bezborodov, A.M. and Kvesitadze, G.I., Mikrobiologicheskii sintez (Microbiological Synthesis), St. Petersburg: Prospekt Nauki, 2011, pp. 60–102.Google Scholar
  6. 6.
    Lukanin, A.V., Inzhenernaya biotekhnologiya: osnovy tekhnologii mikrobiologicheskikh proizvodstv (Engineering Biotechnology: Fundamentals of Microbiological Production Technology), Moscow: INFRA-M, 2017.Google Scholar
  7. 7.
    Lancini, G. and Parenti, F., Antibiotics: an Integrated View, New York: Springer, 1982.CrossRefGoogle Scholar
  8. 8.
    Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Theory of Antibiotics), 5 ed., Moscow: Mosk. Gos. Univ., 1994, pp. 391–405.Google Scholar
  9. 9.
    Galynkin, V.A., Zaikina, N.A., Mindukshev, I.V., and Yurlova, N.A., Promyshlennaya mikologiya (Industrial Mycology), St. Petersburg: Sankt-Peterb. Gos. Khim.-Farm. Akad., 2003, p. 174.Google Scholar
  10. 10.
    Hook, D.J., in Basic Biotechnology, 3rd ed., Cambridge (UK): Cambridge Univ. Press, 2006, p. 433.CrossRefGoogle Scholar
  11. 11.
    Corcoran, J.W., Biosynthesis, Berlin: Springer Science and Business Media, 2012.Google Scholar
  12. 12.
    Belakhov, V.V., Yakovleva, E.P., Kolodyaznaya, V.A., and Boikova, I.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 13, p. 3220. doi  https://doi.org/10.1134/S1070363217130175 CrossRefGoogle Scholar
  13. 13.
    Belakhov, V., Dor, E., Hershenhorn, J., Botoshansky, M., Bravman, T., Kolog, M., Shoham, Y., and Baasov, T., Isr. J. Chem., 2000, vol. 40, nos. 3–4, p. 177. https://eurekamag.com/pdf/003/003444479.pdfGoogle Scholar
  14. 14.
    Belakhov, V.V. and Garabadzhiu, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 13, p. 3002. doi  https://doi.org/10.1134/S1070363216130120 CrossRefGoogle Scholar
  15. 15.
    Belakhov, V.V., Garabadzhiu, A.V., Boikova, I.V., and Antonova, I.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 456. doi  https://doi.org/10.1134/S107036321703148 CrossRefGoogle Scholar
  16. 16.
    Belakhov, V.V., Garabadzhiu, A.V., Boikova, I.V., and Novikova, I.I., Russ. J. Gen. Chem., 2017, vol. 87, no. 13, p. 3151. doi  https://doi.org/10.1134/S1070363217130072 CrossRefGoogle Scholar
  17. 17.
    Mechaly, A., Belakhov, V., Shoham, Y., and Baasov, T., Carbohydr. Res., 1997, vol. 304, no. 2, p. 111.CrossRefGoogle Scholar
  18. 18.
    Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Oxford: Butterworth-Heinemann, 2012.Google Scholar
  19. 19.
    Topkova, O.V., Candidate Sci. (Biol.) Dissertation, St. Petersburg: Sankt-Peterb. Gos. Khim.-Farm. Akad., 2007.Google Scholar
  20. 20.
    Gabidova, A.E., Analiz mikrobiologicheskogo riska v proizvodstve pishchevykh produktov i lekarstvennykh preparatov (Analysis of Microbiological Risk in Production of Food and Drugs), St. Petersburg: Prospekt Nauki, 2016.Google Scholar
  21. 21.
    Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Basic Theory of Antibiotics), 6 ed., Moscow: Mosk. Gos. Univ., 2004, p. 472.Google Scholar
  22. 22.
    Volova, T.G., Vvedenie v biotekhnologiyu (Introduction to Biotechnology), Krasnoyarsk: Sibirsk. Feder. Univ., 2008, p. 63.Google Scholar
  23. 23.
    Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., Potekhina, T.S., and Bunyatyan, N.D., Osnovy farmatsevticheskoi mikrobiologii (Fundamentals of Pharmaceutical Microbiology), St. Petersburg: Prospekt Nauki, 2008, p. 84.Google Scholar
  24. 24.
    Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Martin, J.-F., Garcia-Estrada, C. and Zeilinger, S., Eds., New York: Springer, 2014.Google Scholar
  25. 25.
    Kong, D., Lee, M.-J., Lin, S., and Kim, E.-S., J. Ind. Microbiol. Biotechnol., 2013, vol. 40, no. 6, p. 529. doi  https://doi.org/10.1007/s10295-013-1258-6 CrossRefGoogle Scholar
  26. 26.
    Aparicio, J.F., Barreales, E.G., Payero, T.D., Vicente, C.M., Pedro, A., and Santos-Aberturas, J., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 1, p. 61. doi  https://doi.org/10.1007/s00253-015-7077-0 CrossRefGoogle Scholar
  27. 27.
    Kudo, F. and Eguchi, T., Chem. Record, 2016, vol. 16, no. 1, p. 4. doi  https://doi.org/10.1002/tcr.201500210 CrossRefGoogle Scholar
  28. 28.
    Bakulin, M.K., Grudtsyna, A.S., Pletneva, A.Yu., Kucherenko, A.S., Bakulina, L.V., and Shvedov, I.I., Biotekhnologiya, 2006, no. 5, pp. 39–44.Google Scholar
  29. 29.
    Topkova, O.V., Yakovleva, E.P., and Kolodyaznaya, V.A., Antibiot. Khimioter., 2010, vol. 55, nos. 3–4, p. 3.Google Scholar
  30. 30.
    Zotchev, S.B., in Natural Products in Chemical Biology, Civjan, N., Ed., New York: Wiley, 2012, p. 269.Google Scholar
  31. 31.
    Liu, G., Chater, K.F., Chandra, G.N., Niu, G., and Tan, H., Microbiol. Mol. Biol. Rev., 2013, vol. 77, no. 1, p. 112. doi  https://doi.org/10.1128/MMBR.00054-12 CrossRefGoogle Scholar
  32. 32.
    Hamashima, K. and Kanai, A., Biomol. Concepts, 2013, vol. 4, no. 3, p. 309. doi  https://doi.org/10.1515/bmc-2013-0002 CrossRefGoogle Scholar
  33. 33.
    Weber, T., Int. J. Med. Microbiol., 2014, vol. 304, nos. 3–4, p. 230. doi  https://doi.org/10.1016/j.ijmm.2014.02.001
  34. 34.
    Yim, G., Thaker, M.N., Koteva, K., and Wright, G., J. Antibiot., 2014, vol. 67, no. 1, p. 31.CrossRefGoogle Scholar
  35. 35.
    Baltz, R.H., ACS Synth. Biol., 2014, vol. 3, no. 10, p. 748. doi  https://doi.org/10.1021/sb3000673 CrossRefGoogle Scholar
  36. 36.
    Chen, W., Qi, J., Wu, P., Wan, D., Liu, J., Feng, X., and Deng, Z., J. Ind. Microbiol. Biotechnol., 2016, vol. 43, nos. 2–3, p. 401. doi  https://doi.org/10.1007/s10295-015-1636-3
  37. 37.
    Park, J.W., Nam, S.-J., and Yoon, Y.J., Biochem. Pharm., 2017, vol. 134, p. 56. doi  https://doi.org/10.1016/j.bcp.2016.10.009 CrossRefGoogle Scholar
  38. 38.
    Freshney, R.I., Culture of Animal Cells: a Manual of Basic Technique, 3rd ed., New York: Wiley, 1994.Google Scholar
  39. 39.
    Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., and Potekhina, T.S., Farmatsevticheskaya mikrobiologiya (Pharmaceutical Microbiology), Moscow: Arnebiya, 2003, p. 287.Google Scholar
  40. 40.
    Galynkin, V.A., Zaikina, N.A., Kocherovets, V.I., and Kurbatova, I.Z., Pitatel’nye sredy dlya mikrobiologicheskogo kontrolya kachestva lekarstvennykh sredstv i pishchevykh produktov (Nutrient Media for Microbiological Quality Control of Medicines and Food Products), St. Petersburg: Prospekt Nauki, 2006, p. 31.Google Scholar
  41. 41.
    Antibiotics: Current Innovations and Future Trends, Sanchez, S. and Demain, A. L., Eds., Norfolk (UK): Caister Academic, 2015, p. 49.Google Scholar

Copyright information

© Pleiades Publishing, Ltd 2019

Authors and Affiliations

  • E. P. Yakovleva
    • 1
  • V. A. Kolodyaznaya
    • 1
  • I. V. Boikova
    • 2
  • V. V. Belakhov
    • 3
    Email author
  1. 1.Department of BiotechnologySt. Petersburg State C hemical-Pharmaceutical UniversitySt. PetersburgRussia
  2. 2.Microbiological Plant Protection LaboratoryAll-Russian Institute of Plant ProtectionSt. PetersburgRussia
  3. 3.Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations