Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2400–2409 | Cite as

Synthesis, Physicochemical, and Biological Studies of New Pyridoxine HCl Mononuclear Drug Complexes of V(III), Ru(III), Pt(II), Se(IV), and Au(III) Metal Ions

  • K. A. Alibrahim
  • F. A. Al-Saif
  • H. A. Bakhsh
  • M. S. RefatEmail author
Article
  • 15 Downloads

Abstract

Pyridoxine HCl (vitamin B6; Pyr-H3) complexes with the formula [M(Pyr-H)(H2O)4].Cl·nH2O [M= V(III), Ru(III); n = 0.1], [Pt(Pyr-H)(H2O)(Cl)].Cl, [Se(Pyr-H3)(O)(OH)2], and [Au(Pyr-H)(H2O)2]·Cl are synthesized by the reactions of Pyr-H3 with metal chlorides [V(III), Ru(III), Pt(II), Se(IV), and Au(III)] at 60°C in methanol–water 50: 50 v/v. The accumulated data of the elemental analysis, conductivity measurements, mass, FT-IR, 1H, and 13C NMR, UV-Vis spectroscopy and magnetic moments support elucidated stoichiometry, structures and chelation of the complexes. Thermogravimetric analysis of the synthesized solid complexes is carried out for determining their thermal stability, number of crystalline water molecules and decomposition steps. According to the physicochemical analyses Pyr-H3 reacts with metal ions as a bidentate ligand via both phenolate oxygen and oxygen of the CH2OH group. The antimicrobial and anticancer tests reveal that complexes demonstrate higher antibacterial activity than free Pyr-H3 chelate. According to the cytotoxic results of Pt(IV) and Au(III) complexes in vitro based on human hepato cellular carcinoma (HepG-2) and human breast cancer (MCF-7) tumor cell lines, the former one exhibits promising activity.

Keywords

vitamin B6 chelation gold platinum physicochemical anticancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zaky, M., El-Sayed, M.Y., El-Megharbel, S.M., Abo Taleb, S., and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 176. doi 10.1134/S1070363215010314CrossRefGoogle Scholar
  2. 2.
    Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 718. doi 10.1134/S1070363215030317CrossRefGoogle Scholar
  3. 3.
    Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 1734. doi 10.1134/S1070363215070270CrossRefGoogle Scholar
  4. 4.
    El-Megharbel, S.M., Adam, A.M.A., Megahed, A.S., and Refat, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 2366. doi 10.1134/S1070363215100230CrossRefGoogle Scholar
  5. 5.
    Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2016, vol. 86, p. 708. doi 10.1134/S1070363216030324CrossRefGoogle Scholar
  6. 6.
    Chaviara, T., Christidis, P.C., Papageorgiou, A., Chrysogelou, E., Hadjipavlou-Litina, D.J., and Bolos, C.A., J. Inorg. Biochem, 2005, vol. 99, p. 2102. doi 10.1016/j.jinorgbio.2005.07.011CrossRefGoogle Scholar
  7. 7.
    Nakai, M., Sekiguchi, F., Obata, M., Ohtsuki, C., Adachi, Y., Sakurai, H., Orvig, C., Rehder, D., and Yano, S., J. Inorg. Biochem., 2005, vol. 99, p. 1275. doi 10.1016/j.jinorgbio.2005.02.026CrossRefGoogle Scholar
  8. 8.
    Yang, K.W., Wang, L.F., Wu, J., and Yang, Z.Y., J. Inorg. Biochem., 1993, vol. 52, p. 151. doi 10.1016/0162-0134(93)85032-4CrossRefGoogle Scholar
  9. 9.
    Somer, M.A. and Elizabeth, R.D., Food & Mood, Henry Holt and Company, LLC, 1999, p.200.Google Scholar
  10. 10.
    Fried, B. and Sherma, J., Analysis of Hydrophilic Vitamins, Chromatographic Science Series, vol. 81, New York: Marcel Dekker, 1999, p.215.Google Scholar
  11. 11.
    Metzler, D.E. and Snell, E.E., J. Am. Chem. Soc., 1955, vol. 77, p. 2431. doi 10.1021/ja01614a022CrossRefGoogle Scholar
  12. 12.
    Matushima, Y. and Martell, A.E., J. Amer. Chem. Soc., 1967, vol. 89, p. 1322. doi.10.1021/ja00982a008CrossRefGoogle Scholar
  13. 13.
    Lapper, R.D., Manisch, H.H., and Smith, I.C.P., Can. J. Chem., 1975, vol. 53, p. 2406. doi 10.1139/v75-340CrossRefGoogle Scholar
  14. 14.
    Hanic, F., Acta Crystallogr., 1966, vol. 21, p. 332. doi 10.1107/S0365110X66002895CrossRefGoogle Scholar
  15. 15.
    El-Ezaby, M.S. and El-Eziri, F.R., J. Inorg. Nulc. Chem., 1976, vol. 38, p. 1901. doi 10.1016/0022-1902 (76)80119-4CrossRefGoogle Scholar
  16. 16.
    Hartman, J.S. and Kelusky, E.C., Can. J. Chem., 1979, vol. 57, p. 2118. doi 10.1139/v79-340CrossRefGoogle Scholar
  17. 17.
    Mosset, A., Nepveu-Juras, F., Haran, R., and Bonnet, J.J., J. Inorg. Nucl. Chem., 1978, vol. 40, p. 1259. doi 10.1016/0022-1902(78)80550-8CrossRefGoogle Scholar
  18. 18.
    Eliot, A.C. and Kirsch, J.F., Annu. Rev. Biochem., 2004, vol. 73, p. 383. doi 10.1146/annurev.biochem. 73.011303.074021CrossRefGoogle Scholar
  19. 19.
    Makhyoun, M.A., Al-Salem, N.A., and El-Ezaby, M.S., Inorg. Chim. Acta, 1986, vol. 123, p. 117–125. doi 10.1016/S0020-1693(00)86333-1CrossRefGoogle Scholar
  20. 20.
    Back, D.F., de Oliveira, G.M., and Lang, E.S., J. Inorg. Biochem., 2006, vol. 100, p. 1698. doi 10.1016/j.jinorgbio.2006.06.004CrossRefGoogle Scholar
  21. 21.
    Bonfada, E., Oliveira, G.M., Back, D.F., and Lang, E.S., Anorg. Allg. Chem., 2005, vol. 631, p. 878. doi 10.1002/zaac.200400504CrossRefGoogle Scholar
  22. 22.
    Rao, S.P.S., Varughese, K.I., and Manohar, H., Inorg. Chem., 1986, vol. 25, p. 734. doi 10.1021/ic00226a006CrossRefGoogle Scholar
  23. 23.
    Neelakantan, M.A., Sundaram, M., Thalamuthu, S., and Nair, M.S., J. Coord. Chem., 2010, vol. 63, p. 1969. doi 10.1080/00958972.2010.493583CrossRefGoogle Scholar
  24. 24.
    Casas, J.S., Castineiras, A., Condori, F., Couce, M.D., Russo, U., Sanchez, A., Sordo, J., and Varela, J.M., Polyhedron, 2000, vol. 19, p. 813. doi 10.1016/S0277-5387(00)00321-1CrossRefGoogle Scholar
  25. 25.
    Mathews, I.I., and Manohar, H., J. Chem. Soc., Dalton Trans., 1991, p. 2139. doi 10.1039/DT9910002139Google Scholar
  26. 26.
    Chamayou, A.C., Neelakantan, M.A., Thalamuthu, S., and Janiak, C., Inorg. Chim. Acta, 2011, vol. 365, p. 447. doi 10.1016/j.ica.2010.07.033CrossRefGoogle Scholar
  27. 27.
    Dey, S., Banerjee, P., Gangopadhyay, S., and Vojtísek, P., Trans. Met. Chem., 2003, vol. 28, p. 765. doi 10.1023/A:1026073108597CrossRefGoogle Scholar
  28. 28.
    Acquaye, J.H.K.A. and Richardson, M.F., Inorg. Chim. Acta, 1992, vol. 201, p. 101. doi 10.1016/S0020-1693 (00)85009-4CrossRefGoogle Scholar
  29. 29.
    Sabirov, V.Kh., Litvinov, I.A., and Yunuskhodzhaev, A.N., Koord. Khim., 1991, vol. 17, p.44.Google Scholar
  30. 30.
    Refat, M.S., Elsabawy, K.M., Alhadhrami, A., Almalki, A.S.A., El-Sayed, M.Y., and Hassan, R.F., J. Mol. Liq., 2018, vol. 255, p. 462. doi 10.1016/j.molliq.2018.01.187CrossRefGoogle Scholar
  31. 31.
    Abd El-Wahed, M.G., El-Megharbel, S.M., El-Sayed, M.Y., Zahran, Y.M., and Refat, M.S., Russ. J. Gen. Chem., 2016, vol. 86, p. 391–399. doi 10.1134/S1070363216020328CrossRefGoogle Scholar
  32. 32.
    Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2017, vol. 87, p. 873. doi 10.1134/S107036321704034XCrossRefGoogle Scholar
  33. 33.
    Al-Khodir, F.A.I. and Refat, M.S., Russ. J. Gen. Chem., 2017, vol. 87, p. 1087. doi 10.1134/S1070363217050322CrossRefGoogle Scholar
  34. 34.
    Bauer, A.W., Kirby, W.A., Sherris, C., and Turck, M., Am. J. Clin. Pathology, 1996, vol. 45, p.493.CrossRefGoogle Scholar
  35. 35.
    Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, p. 1437.Google Scholar
  36. 36.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. doi 10.1016/0022-1759(83)90303-4CrossRefGoogle Scholar
  37. 37.
    Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A., and Elaasser, M.M., Heterocycles, 2015, vol. 91, p. 1227.CrossRefGoogle Scholar
  38. 38.
    Refat, M.S., J. Mol. Struct., 2007, vol. 842, p. 24. doi 10.1016/j.molstruc.2006.12.006CrossRefGoogle Scholar
  39. 39.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1997.Google Scholar
  40. 40.
    Ross, S.D., Inorganic Infrared and Raman Spectra, London: Mc Graw Hill, 1972.Google Scholar
  41. 41.
    Drago, R.S., Physical Methods in Chemistry, Philadelphia: W.B. Saunders, 1977, p.382.Google Scholar
  42. 42.
    Podsiadly, H. and Karwecka, Z., Polyhedron, 2009, vol. 28, p. 1568. doi 10.1016/j.poly.2009.03.015CrossRefGoogle Scholar
  43. 43.
    Chandra, S., Synth. React. Inorg. Met.-Org., Nano-Met. Chem., 1992, vol. 22, p. 1565. doi 10.1080/15533179208020277CrossRefGoogle Scholar
  44. 44.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Elsevier, 1984.Google Scholar
  45. 45.
    Oliff, R.W. and Odell, A.L., J. Chem. Soc., 1964, p. 2467. doi 10.1039/JR9640002417Google Scholar
  46. 46.
    Tunney, J.M., Blake, A.J., Davies, E.S., Mcmater, J., Wilson, C., and Garner, C.D., Polyhedron, 2006, vol. 25, p. 591. doi 10.1016/j.poly.2005.09.002CrossRefGoogle Scholar
  47. 47.
    Llor, J. and Munoz, L., J. Org. Chem., 2000, vol. 65, p. 2716. doi 10.1021/jo991821tCrossRefGoogle Scholar
  48. 48.
    Horowitz, H.H., and Metzger, G., Analytical Chemistry, 1963, vol. 35, p. 1464. doi. 10.1021/ac60203a013CrossRefGoogle Scholar
  49. 49.
    Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, p. 68. doi 10.1002/pol.1965.110031106CrossRefGoogle Scholar
  50. 50.
    X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Klug, H.P., Ed., New York: Wiley, 1974.Google Scholar
  51. 51.
    Miyauchi, A., and Okabe, T.H., Materials Transactions, 2010, vol. 51, p. 1102. doi 10.2320/matertrans.M2010027CrossRefGoogle Scholar
  52. 52.
    Singh, J.P., Karabacak, T., Morrow, P., Pimanpang, S., Lu, T.-M., and Wang, G.-C., J. Nanosci. Nanotechnol., 2007, vol. 7, p. 2192. doi 10.1166/jnn.2007.793CrossRefGoogle Scholar
  53. 53.
    Krehula, S. and Music, S., Croat. Chem. Acta, 2011, vol. 84, p.465.CrossRefGoogle Scholar
  54. 54.
    Dwivedi, S., AlKhedhairy, A.A., Ahamed, M., and Musarrat, J., PLoS One, 2013, vol. 8, p. e57404. doi 10.1371/journal.pone.0057404CrossRefGoogle Scholar
  55. 55.
    He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J., and Gu, N., Mater. Lett., 2007, vol. 61, p. 3984. doi 10.1016/j.matlet.2007.01.018CrossRefGoogle Scholar
  56. 56.
    Tabassum, S., Asim, A., Arjmand, F., Arjmand, F., Afzal, M., and Bagchi, V., Eur. J. Med. Chem., 2012, vol. 58, p. 308. doi 10.1016/j.ejmech.2012.09.051CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. A. Alibrahim
    • 1
  • F. A. Al-Saif
    • 1
  • H. A. Bakhsh
    • 1
  • M. S. Refat
    • 1
    • 2
    • 3
    Email author
  1. 1.College of SciencePrincess Nourah bint Abdulrahman University, Department of ChemistryAbdulrahmanSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceTaif University, P.O. Box 888, Al-HawiahTaifSaudi Arabia
  3. 3.Department of Chemistry, Faculty of Science, Port SaidPort Said UniversityPort SaidEgypt

Personalised recommendations