Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2381–2387 | Cite as

Analytical Studies of 6-Hydroxy-5-[(2-hydroxy- 6-oxocyclohex-1-en-1-yl)(2-nitrophenyl)methyl]-1,3-dimethylpyrimidine-2,4(1H,3H)-dione

  • A. Barakat
  • M. Ali
  • A. M. Al-Majid
  • S. M. Soliman
  • H. A. Ghabbour
Article
  • 11 Downloads

Abstract

Synthesis of 6-hydroxy-5-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)(2-nitrophenyl)methyl]-1,3-dimethylpyrimidine- 2,4(1H,3H)-dione in a one pot process based on barbituric acid derivatives, 1,3-cyclohexandione and 2-nitrobenzaldehyde in water media involving diethyl amine as a base. The reaction proceeds efficiently, smoothly with high yield. The synthesized compound is characterized by spectral methods and X-ray single crystal diffraction. The ground state molecular geometry of the compound has been calculated using the density functional method (DFT) with 6–311G(d,p) basis set. The calculated characteristics and electronic absorption spectra based on the TD–DFT method demonstrated good agreement with the experimental data. The electronic absorption, frontier molecular orbital analyses (HOMO–LUMO) and nonlinear optical (NLO) properties were also discussed.

Keywords

green chemistry barbituric acid cyclohexandione DFT-computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goodman and Gilman’s The Pharmacological Basis of Therapeutics, Hardman, J.G. and Limbird, L.E., Eds., New York: Mc-Graw Hill Co., 2001, 10th ed.Google Scholar
  2. 2.
    Moussier, N., Bruche, L., Viani, F., and Zanda, M., Curr. Org. Chem., 2003, vol. 7, no. 11, p. 1071. doi 10.2174/1385272033486567CrossRefGoogle Scholar
  3. 3.
    Bojarski, J.T., Mokrosz, J.L., Barton, H.J., and Paluchowska, M.H., Adv. Heterocycl. Chem., 1985, vol. 38, p.229.CrossRefGoogle Scholar
  4. 4.
    Taylor, J.B., Modern Medical Chemistry; New York: Prentice Hall, 1994.Google Scholar
  5. 5.
    Barakat, A., Al-Majid, A.M., Al-Najjar, H.J., Mabkhot, Y.N., Javaid, S., Yousuf, S., and Choudhary, M.I., Eur. J. Med. Chem., 2014, vol. 84, p. 146. doi 10.1016/j.ejmech.2014.07.026CrossRefGoogle Scholar
  6. 6.
    Barakat, A., Islam, M.S., Al-Majid, A.M., Ghabbour, H.A., Fun, H.K., Javed, K., Imad, R., Yousuf, S., Choudhary, M.I., and Wadood, A., Bioorg. Med. Chem., 2015, vol. 23, no. 20, p. 6740. doi 10.1016/j.bmc.2015.09.001CrossRefGoogle Scholar
  7. 7.
    Ravikumar, C., Joe, I.H., and Jayakumar, V.S., Chem. Phys. Lett., 2008, vol. 460, no. 4, p. 552. doi 10.1016/j.cplett.2008.06.047CrossRefGoogle Scholar
  8. 8.
    Sun, Y.X., Hao, Q.L., Lu, L.D., Wang, X., and Yang, X.J., Spectrochim. Acta, Part A, 2010, vol. 75, no.1, p. 203. doi 10.1016/j.saa.2009.10.013CrossRefGoogle Scholar
  9. 9.
    Cetin, S., Yildirim, G., Parlak, C., Akdogan, M., and Terzioglu, C., Spectrochim. Acta, Part A, 2011, vol. 79, no. 5, p. 1024. doi 10.1016/j.saa.2011.04.015CrossRefGoogle Scholar
  10. 10.
    Rinaldi, D. and Rivail, J.L., Theor. Chim. Acta, 1973, vol. 32, no. 1, p.57.CrossRefGoogle Scholar
  11. 11.
    Miertuš, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, no.1, p.117.CrossRefGoogle Scholar
  12. 12.
    Hall, R.J., Davidson, M.M., Burton, N.A., and Hillier, I.H., J. Phys. Chem. 1995, vol. 99, no. 3, p. 921. doi 10.1021/j100003a014CrossRefGoogle Scholar
  13. 13.
    Becke, A.D., J. Chem. Phys. 1993, vol. 98, p. 5648. doi o10.1063/1.464913CrossRefGoogle Scholar
  14. 14.
    Peng, C., Ayala, P.Y., Schlegel, H.B., and Frisch, M.J., J. Comput. Chem., 1996, vol. 17, p. 49. doi 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0CrossRefGoogle Scholar
  15. 15.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., et. al., Gaussian 03, Revision C 01, Gaussian, Inc., Wallingford, 2004.Google Scholar
  16. 16.
    Dennington II, R., Keith, T., and Millam, J., GaussView, Version 4. 1. 2, Semichem, Inc., Shawnee Mission, 2007.Google Scholar
  17. 17.
    Runge, E. and Gross, E.K.U., Phys. Rev. Lett., 1984, vol. 52, p.997.CrossRefGoogle Scholar
  18. 18.
    Stratmann, R.E., Scuseria, G.E., and Frisch, M.J., J. Chem. Phys., 1998, vol. 109, p. 8218. doi 10.1063/1.477483CrossRefGoogle Scholar
  19. 19.
    Bauernschmitt, R. and Ahlrichs, R., Chem. Phys. Lett., 1996, vol. 256, p. 454. doi 10.1016/0009-2614(96) 00440-XCrossRefGoogle Scholar
  20. 20.
    Casida, M.E., Jamorski, C., Casida, K.C., and Salahub, D.R., J. Chem. Phys., 1998, vol. 108, p. 4439. doi 10.1063/1.475855CrossRefGoogle Scholar
  21. 21.
    Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117. doi 10.1016/0301-0104(81)85090-2CrossRefGoogle Scholar
  22. 22.
    Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102, p. 1995. doi 10.1021/jp9716997CrossRefGoogle Scholar
  23. 23.
    Cossi, M., Rega, N., Scalmani, G., and Barone, V., J. Comput. Chem., 2003, vol. 24, p. 669. doi 10.1002/jcc.10189CrossRefGoogle Scholar
  24. 24.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. doi 10.1021/cr9904009CrossRefGoogle Scholar
  25. 25.
    Beck, T., Krasauskas, A., Gruene, T., and Sheldrick, G.M., Acta Cryst. A, 2008, vol. 64, p. 112. doi 10.1107/S0907444908030266CrossRefGoogle Scholar
  26. 26.
    Spek, A.L., Acta Cryst. D, 2009, vol. 65, p.148.CrossRefGoogle Scholar
  27. 27.
    Fleming, I., Frontier Orbitals and Organic Chemical Reactions, London: Wiley, 1976.Google Scholar
  28. 28.
    Kim, K.H., Han, Y.K., and Jung, J., Theor. Chem. Acc., 2005, vol. 113, p. 233. doi 10.1007/s00214-005-0630-7CrossRefGoogle Scholar
  29. 29.
    Politzer, P., Laurence, P.R., and Jayasuriya, K., Environ. Health Perspect., 1985, vol. 61, p.191.CrossRefGoogle Scholar
  30. 30.
    Politzer, P. and Lane, P., Struct. Chem., 1990, vol. 1, p. 159. doi 10.1007/BF00674257CrossRefGoogle Scholar
  31. 31.
    Scrocco, E. and Tomasi, J., Topics in Current Chemistry, Berlin: Springer, 1973, vol.7.Google Scholar
  32. 32.
    Luque, F.J., López, J.M., and Orozco, M., Theor. Chem. Account., 2000, p. 343. doi 10.1007/978-3-662-10421-7_56CrossRefGoogle Scholar
  33. 33.
    Sun, Y.X., Hao, Q.L., Wei, W.X., Yu, Z.X., Lu, L.D., Wang, X., and Wang, Y.S., J. Mol. Struct.: THEOCHEM, 2009, vol. 904, no. 1, p. 74. doi 10.1016/j.theochem.2009.02.036CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Barakat
    • 1
    • 3
  • M. Ali
    • 1
  • A. M. Al-Majid
    • 1
  • S. M. Soliman
    • 2
    • 3
  • H. A. Ghabbour
    • 4
    • 5
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of ChemistryRabigh College of Science and ArtRabighSaudi Arabia
  3. 3.Department of Chemistry, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  4. 4.Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Medicinal Chemistry, Faculty of PharmacyMansoura UniversityMansouraEgypt

Personalised recommendations