Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 11, pp 2314–2320 | Cite as

Synthesis of Bisthiacalix[4]arene: Reaction of Piperazine with Monoacrylamide Derivative of p-tert-Butylthiacalix[4]arene

  • R. V. Nosov
  • I. I. StoikovEmail author
Article
  • 11 Downloads

Abstract

The reaction of acryloyl chloride with the monoamine derivative of p-tert-butylthiacalix[4]arene was used to synthesize p-tert-butylthiacalix[4]arene monoacrylamide in the 1,3-alternate conformation. The effect of the nature of the amine on the result of its Michael reaction with the synthesized p-tert-butylthiacalix[4]arene monoacrylamide was studied. The latter was reacted with piperazine to obtain bisthiacalix[4]arene with the macrocyclic fragments in the 1,3-alternate conformation.

Key words

receptor dendrimers bisthiacalix[4]arene multithiacalix[4]arene acrylamides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caminade, A.M., Yan, D., and Smith, D.K., Chem. Soc. Rev., 2015, vol. 44, no. 12, p. 3870. doi 10.1039/C5CS90049BCrossRefGoogle Scholar
  2. 2.
    Lee, C.C., MacKay, J.A., Fréchet, J.M., and Szoka, F.C., Nat. Biotechnol., 2005, vol. 23, no. 12, p. 1517. doi 10.1038/nbt1171CrossRefGoogle Scholar
  3. 3.
    Kobayashi, H. and Brechbiel, M.W., Adv. Drug Deliv. Rev., 2005, vol. 57, no. 15, p. 2271. doi 10.1016/j.addr.2005.09.016CrossRefGoogle Scholar
  4. 4.
    Pack, D.W., Hoffman, A.S., Pun, S., and Stayton, P.S., Nat. Rev. Drug Discov., 2005, vol. 4, no. 7, p. 581. doi 10.1038/nrd1775CrossRefGoogle Scholar
  5. 5.
    Kofoed, J. and Reymond, J.L., Curr. Opin. Chem. Biol., 2005, vol. 9, no. 6, p. 656. doi 10.1016/j.cbpa.2005.10.013CrossRefGoogle Scholar
  6. 6.
    Arima, H., Yoshimatsu, A., Ikeda, H., Ohyama, A., Motoyama, K., Higashi, T., Tsuchiya, A., Niidome, T., Katayama, Y., Hattori, K., and Takeuchi, T., Mol. Pharm., 2012, vol. 9, no. 9, p. 2591. doi 10.1021/mp300188fCrossRefGoogle Scholar
  7. 7.
    Li, Q., Han, K., Li, J., Jia, X., and Li, C., Tetrahedron Lett., 2015, vol. 56, no. 24, p. 3826. doi 10.1016/j.tetlet.2015.04.078CrossRefGoogle Scholar
  8. 8.
    Cortez-Maya, S., Hernández-Ortega, S., Ramírez-Apan, T., Lijanova, I.V., and Martínez-García, M., Bioorg. Med. Chem., 2012, vol. 20, no. 1, p. 415. doi 10.1016/j.bmc.2011.10.070CrossRefGoogle Scholar
  9. 9.
    Kim, J.S., Lee, S.Y., Yoon, J., and Vicens, J., Chem. Commun., 2009, vol. 32, p. 4791. doi 10.1039/B900328BCrossRefGoogle Scholar
  10. 10.
    Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J., and Kalchenko, V., Tetrahedron Lett., 2003, vol. 44, no. 38, p. 7167. doi 10.1016/S0040-4039 (03)01809-4CrossRefGoogle Scholar
  11. 11.
    Vavilova, A.A., Nosov, R.V., Mostovaya, O.A., and Stoikov, I.I., Macroheterocycles, 2016, vol. 9, no. 3, p. 294. doi10.6060/mhc160531sCrossRefGoogle Scholar
  12. 12.
    Kim, S.K., Sim, W., Vicens, J., and Kim, J.S., Tetrahedron Lett., 2003, vol. 44, no. 4, p. 805. doi 10.1016/S0040-4039(02)02657-6CrossRefGoogle Scholar
  13. 13.
    Lalor, R., Di Gesso, J.L., Mueller, A., and Matthews, S.E., Chem. Commun., 2007, vol. 46, p. 4907. doi 10.1039/B712100HCrossRefGoogle Scholar
  14. 14.
    Nosov, R., Padnya, P., Shurpik, D., and Stoikov, I., Molecules, 2018, vol. 23, no. 5, p. 1117. doi 10.3390/molecules23051117CrossRefGoogle Scholar
  15. 15.
    Makha, M., Nichols, P.J., Hardie, M.J., and Raston, C.L., J. Chem. Soc. Perkin Trans. 1, 2002, vol. 3, p. 354. doi10.1039/B109625GCrossRefGoogle Scholar
  16. 16.
    Mogck, O., Parzuchowski, P., Nissinen, M., Böhmer, V., Rokicki, G., and Rissanen, K., Tetrahedron, 1998, vol. 54, no. 34, p. 10053. doi 10.1016/S0040-4020(98)00594-8CrossRefGoogle Scholar
  17. 17.
    Galán, H., Murillo, M.T., Quesada, R., Escudero-Adán, E.C., Benet-Buchholz, J., Prados, P., and de Mendoza, J., Chem. Commun., 2010, vol. 46, no. 7, p. 1044. doi 10.1039/B921465HCrossRefGoogle Scholar
  18. 18.
    Galán, H., Hennrich, G., de Mendoza, J., and Prados, P., Eur. J. Org. Chem., 2010, vol. 2010, no. 7, p. 1249. doi 10.1002/ejoc.200901394CrossRefGoogle Scholar
  19. 19.
    Roy, R. and Kim, J.M., Angew. Chem. Int. Ed., 1999, vol. 38, no. 3, p. 369. doi 10.1002/(SICI)1521-3773 (19990201)38:3<369::AID-ANIE369>3.0.CO;2-1CrossRefGoogle Scholar
  20. 20.
    Haba, O., Haga, K., Ueda, M., Morikawa, O., and Konishi, H., Chem. Mater., 1999, vol. 11, no. 2, p. 427. doi 10.1021/cm980654vCrossRefGoogle Scholar
  21. 21.
    Thulasi, S., Savithri, A., and Varma, R.L., Supramol. Chem., 2011, vol. 23, no. 7, p. 501. doi 10.1080/10610278.2011.556252CrossRefGoogle Scholar
  22. 22.
    Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P., Polym. J., 1985, vol. 17, no. 1, p. 117. doi 10.1295/polymj.17.117CrossRefGoogle Scholar
  23. 23.
    Galukhin, A.V., Zaikov, E.N., Antipin, I.S., Konovalov, A.I., and Stoikov, I.I., Macroheterocycles, 2012, vol. 5, p. 266. doi 10.6060/mhc2012.120781sCrossRefGoogle Scholar
  24. 24.
    Gaunt, M.J., Yu, J., and Spencer, J.B., J. Org. Chem., 1998, vol. 63, no. 13, p. 4172. doi 10.1021/jo980823vCrossRefGoogle Scholar
  25. 25.
    Nosov, R.V. and Stoikov I.I., Macroheterocycles, 2015, vol. 8, no. 2, p. 120. doi 10.6060/mhc140929sCrossRefGoogle Scholar
  26. 26.
    Stoikov, I.I., Galukhin, A.V., Zaikov, E.N., and Antipin, I.S., Mendeleev Commun., 2009, vol. 19, no. 4, p. 193. doi10.1016/j.mencom.2009.07.006CrossRefGoogle Scholar
  27. 27.
    Cheriaa, N., Abidi, R., and Vicens, J., Tetrahedron Lett., 2004, vol. 45, no. 41, p. 7795. doi 10.1016/j.tetlet.2004.07.154CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Butlerov Chemical InstituteKazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations