Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2209–2212 | Cite as

Synthesis and Structure of 1-(1,2,3-Thiadiazolylcarbonyl)-4-(1,2,3-thiadiazolyl)semicarbazide Derivatives

  • L. A. KhamidullinaEmail author
  • T. A. Kalinina
  • P. V. Dorovatovskii
  • V. N. Khrustalev
  • T. V. Glukhareva
Letters to the Editor
  • 14 Downloads

Abstract

Novel unknown potentially biologically active 1-(1,2,3-thiadizolylcarbonyl)-4-(1,2,3-thiadiazolyl)-semicarbazides were synthesized by reactions of 1,2,3-thiadiazolylcarboxylic acid hydrazides with 1,2,3- thiadizolylcarbonyl azide in high yields. The structure of the synthesized compounds was studied by NMR and IR spectroscopy and X-ray diffraction analysis.

Keywords

1,2,3-thiadiazole acyl semicarbazide semicarbazide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhan, P., Liu, X., Li, Z., Fang, Z., Li, Z., Wang, D., Pannecouque, C., and De Clercq, E., Bioorg. Med. Chem., 2009, vol. 17, p. 5920. doi 10.1016/j.bmc.2009.07.004CrossRefGoogle Scholar
  2. 2.
    Krishnaraj, T. and Muthusubramanian, S., J. Heterocycl. Chem., 2014, vol. 51, p. 1012. doi 10.1002/jhet.1804CrossRefGoogle Scholar
  3. 3.
    Dong, W.-L., Liu, Z.-X., Liu, X.-H., Li, Z.-M., and Zhao, W.-G., Eur. J. Med. Chem., 2010, vol. 45, p. 1919. doi 10.1016/j.ejmech.2010.01.032CrossRefGoogle Scholar
  4. 4.
    Zhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C., and De Clercq, E., Eur. J. Med. Chem., 2009, vol. 44, p. 4648. doi 10.1016/j.ejmech.2009.06.037CrossRefGoogle Scholar
  5. 5.
    Cikotiene, I., Kazlauskas, E., Matuliene, J., Michailoviene, V., Torresan, J., Jachno, J., and Matulis, D., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 1089. doi 10.1016/j.bmcl.2009.01.003CrossRefGoogle Scholar
  6. 6.
    Paulrasu, K., Duraikannu, A., Palrasu, M., Shanmugasundaram, A., Kuppusamy, M., and Thirunavukkarasu, B., Org. Biomol. Chem., 2014, vol. 12, p. 5911. doi 10.1039/c4ob00739eCrossRefGoogle Scholar
  7. 7.
    Kodisundaram, P., Amirthaganesan, S., and Balasankar, T., J. Agric. Food Chem., 2013, vol. 61, p. 11952. doi 10.1021/jf404537dCrossRefGoogle Scholar
  8. 8.
    Padmavathi, V., Mahesh, K., Nagendra Mohan, A.V., and Padmaja, A., Chem. Pharm. Bull., 2009, vol. 57, p. 561. doi 10.1248/cpb.57.561CrossRefGoogle Scholar
  9. 9.
    Guo, D., Wang, Z., Fan, Z., Zhao, H., Zhang, W., Cheng, J., Yang, J., Wu, Q., Zhang, Y., and Fan, Q., Chin. J. Chem., 2012, vol. 30, p. 2522. doi 10.1002/cjoc.201200268CrossRefGoogle Scholar
  10. 10.
    Liu, X.-H., Weng, J.-Q., and Tan, C.-X., Asian J. Chem., 2011, vol. 23, p. 4064.Google Scholar
  11. 11.
    Song, H., Feng, W.-B., Cheng, F., and Shi, D.-Q., J. Heterocycl. Chem., 2013, vol. 50, p. 1381. doi 10.1002/jhet.1659CrossRefGoogle Scholar
  12. 12.
    Cheng, F. and Shi, D.Q., J. Heterocycl. Chem., 2012, vol. 49, p. 732. doi 10.1002/jhet.790CrossRefGoogle Scholar
  13. 13.
    Min, L.-J., Tan, C.-X., Weng, J.-Q., and Liu, X.-H., Phosphorus, Sulfur, Silicon, Relat. Elem., 2014, vol. 189, p. 379. doi 10.1080/10426507.2013.820186CrossRefGoogle Scholar
  14. 14.
    Min, L.-J., Yang, M.-Y., Mu, J.-X., Sun, Z.-H., Tan, C.-X., Weng, J.-Q., Liu, X.-H., and Zhang, Y.-G., Phosphorus, Sulfur, Silicon, Relat. Elem., 2015, vol. 190, p. 1884. doi 10.1080/10426507.2015.1031755CrossRefGoogle Scholar
  15. 15.
    Wang, H., Yang, Z., Fan, Z., Wu, Q., Zhang, Y., Mi, N., Wang, S., Zhang, Z., Song, H., and Liu, F., J. Agric. Food Chem., 2011, vol. 59, p. 628. doi 10.1021/jf104004qCrossRefGoogle Scholar
  16. 16.
    Cui, Z., Ling, Y., Li, B., Li, Y., Rui, C., Cui, J., Shi, Y., and Yang, X., Molecules, 2010, vol. 15, p. 4267. doi 10.3390/molecules15064267CrossRefGoogle Scholar
  17. 17.
    Chen, L., Wang, Q., Huang, R., Mao, C., Shang, J., and Bi, F., J. Agric. Food Chem., 2005, vol. 53, p. 38. doi 10.1021/jf048561nCrossRefGoogle Scholar
  18. 18.
    Chen, L., Huang, Z., Wang, Q., Shang, J., Huang, R., and Bi, F., J. Agric. Food Chem., 2007, vol. 55, p. 2659. doi 10.1021/jf063564gCrossRefGoogle Scholar
  19. 19.
    Sun, R., Zhang, Y., Chen, L., Li, Y., Li, Q., Song, H., Huang, R., Bi, F., and Wang, Q., J. Agric. Food Chem., 2009, vol. 57, p. 3661. doi 10.1021/jf900324aCrossRefGoogle Scholar
  20. 20.
    Andurkar, S.V., Béguin, C., Stables, J.P., and Kohn, H., J. Med. Chem., 2001, vol. 44, p. 1475. doi 10.1021/jm000517lCrossRefGoogle Scholar
  21. 21.
    Pitucha, M., Rzaczynska, Z., and Mazur, L., X-Ray Struct. Anal. Online, 2009, vol. 25, p. 17. doi 10.2116/xraystruct.25.67CrossRefGoogle Scholar
  22. 22.
    Bondock, S., Trhoni, A.E.-G., and Fadda, A.A., Arkivoc, 2006, vol. 9, p. 113. doi 10.3998/ark.5550190.0007.905Google Scholar
  23. 23.
    Wujec, M., Pitucha, M., and Dobosz, M., Heterocycles, 2006, vol. 68, p. 779. doi 10.3987/COM-05-10649CrossRefGoogle Scholar
  24. 24.
    Pachuta-Stec, A., Biernasiuk, A., Malm, A., and Pitucha, M., J. Heterocycl. Chem., 2017, vol. 54, p. 2867. doi 10.1002/jhet.2893CrossRefGoogle Scholar
  25. 25.
    Martin, D. and Mucke, W., Lieb. Ann. Chem., 1965, vol. 682, p. 90. doi 10.1002/jlac.19656820109CrossRefGoogle Scholar
  26. 26.
    Yasuda, M., Nakashita, H., and Yoshida, S., J. Pestic. Sci., 2004, vol. 29, p. 46. doi 10.1584/jpestics.29.46CrossRefGoogle Scholar
  27. 27.
    Murthy, B.N.S. and Murch, S.J., In Vitro Cell. Dev. Biol.-Plant., 1998, vol. 34, p. 267. doi 10.1007/BF02822732CrossRefGoogle Scholar
  28. 28.
    Kalinina, T.A., Shakhmina, Y.S., Glukhareva, T.V., Morzherin, Y.Y., Fan, Z.-J., Borzenkova, R.A., Skolobanova, E.S., and Kiseleva, I.S., Chem. Heterocycl. Compd., 2014, vol. 50, p. 1039. doi 10.1007/s10593-014-1561-9CrossRefGoogle Scholar
  29. 29.
    Emelianov, V.V., Musalnikova, A.V., Savateeva, E.A., Shakhmina, Y.S., Kalinina, T.A., Glukhareva, T.V., and Morzherin, Y.Y., Russ. Chem. Bull., 2016, vol. 65, p. 203. doi 10.1007/s11172-016-1285-3CrossRefGoogle Scholar
  30. 30.
    Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., J. Chem. Soc. Perkin Trans., 1987, vol. 2, p. S1. doi 10.1039/p298700000s1CrossRefGoogle Scholar
  31. 31.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, p. 441. doi 10.1021/j100785a001CrossRefGoogle Scholar
  32. 32.
    Wang, D., Mao, W-T., Fan, Zh-J., Li, J-J., Huang, Yu., Song, H-B., Fan, Q., Kalinina, T.A., Glukhareva, T.V., Morzherin, Yu.Yu., Belskaya, N.P., and Bakulev, V.A., Chin. J. Struct. Chem., 2013, vol. 32, p.673.Google Scholar
  33. 33.
    Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G.W., Acta Crystallogr., Sect. D, 2011, vol. 67, p. 271. doi 10.1107/S0907444910048675CrossRefGoogle Scholar
  34. 34.
    Evans, P., Acta Crystallogr., Sect. D, 2006, vol. 62, p. 72. doi 10.1107/S0907444905036693CrossRefGoogle Scholar
  35. 35.
    Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. doi 10.1107/S2053229614024218CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Khamidullina
    • 1
    • 2
    Email author
  • T. A. Kalinina
    • 1
  • P. V. Dorovatovskii
    • 3
  • V. N. Khrustalev
    • 3
    • 4
  • T. V. Glukhareva
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  3. 3.Kurchatov Institute National Research CenterMoscowRussia
  4. 4.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations