Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2170–2176 | Cite as

Three New Complexes of Theophylline Drug with Sc(III), Nb(V), and W(VI) Ions: Spectroscopic, Thermal Stability, and Antimicrobial Studies

  • A. A. El-Habeeb
  • M. S. RefatEmail author


Herein, three newly synthesized theophylline (TPE) complexes with transition metal ions (Sc3+, Nb5+ and W6+) are characterized by FT-IR and UV-Vis spectra, magnetic and thermogravimetric analysis, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmittance electron microscopy (TEM). FT-IR spectra confirm that the metal ions coordinate to TPE chelate as a mono-dentate ligand via nitrogen atom N7 of the deprotonated NH group. Theophylline complexes are formed in 1 : 2 (metal: ligand) stoichiometry. According to TGA curves the complexes do not contain crystallization water outside the binding spheres. The accumulated data indicate the octahedral geometry for Sc(III) and W(VI) complexes. The Nb(V) complex is four coordinated. Sc(III) And W(VI) complexes in DMSO demonstrate non-electrolytic nature, and Nb(V) complex acts as an electrolyte. The TPE complexes are tested in vitro against bacteria (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus) and fungi (Aspergillus flavus and Candida albicans). The complexes exhibit high antimicrobial activity. The in vitro anticancer activity of Sc(III) complex is screened against the human hepato cellular carcinoma (HepG-2) tumor cell line.


theophylline Sc(III) spectroscopic complex nanoparticles antimicrobial anticancer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nafisi, S., Sadjadi, A.S., Zadeh, S.S., and Maryam, J. Biomol. Struct. Dyn., 2003, vol. 21(2), p. 289. doi 10.1080/07391102.2003.10506924CrossRefGoogle Scholar
  2. 2.
    Rao, F.V., Andersen, O.A., Vora, K.A., DeMartino, J.A., and van Aalten, D.M.F., Chem. Biol., 2005, vol. 12, p. 973. doi 10.1016/j.chembiol.2005.07.009CrossRefGoogle Scholar
  3. 3.
    Piosik, J., Gwizdek-Wisniewska, A., Ulanowska, K., Ochocinski, J., Czyz, A., and Wegrzyn, G., Acta Biochim. Pol., 2005, vol. 52(4), p.923.Google Scholar
  4. 4.
    Kiriaki, M., Duclerc, F., José, A.P.M., Oscar, V.O., and Ademar, B., Study of Theophilline Stability on Polymer Matrix, Santos. SP. Brazil, September 30 to October 5, 2007.Google Scholar
  5. 5.
    Marwaha, S.S., Kaur, J., and Sodhi, G.S., Met. Based Drugs, 1995, vol. 2(1), p. 13. doi 10.1155/MBD.1995.13CrossRefGoogle Scholar
  6. 6.
    Sahlabadi, M., Daryanavaed, M., Hadadzadeh, H., and Amirghofran, Z., J. Mol. Struct., 2018, vol. 1155, p. 450. doi 10.1016/j.molstruc.2017.11.029CrossRefGoogle Scholar
  7. 7.
    David, L., Cozar, O., Forizs, E., Craciun, C., Ristoiu, D., and Balan, C., Spectrochim. Acta, Part A, 1999, vol. 55, no. 12, p. 2559. doi 10.1016/S1386-1425(99)00115-8CrossRefGoogle Scholar
  8. 8.
    Dreosti, I.E., Nutr. Rev, 1996, vol. 54, p. 51. doi 10.1111/j.1753-4887.1996.tb03819.xCrossRefGoogle Scholar
  9. 9.
    Begum, N.S., and Manohar, H., Polyhedron, 1994, vol. 13(2), p. 307. doi 10.1016/S0277-5387(00)86607-3CrossRefGoogle Scholar
  10. 10.
    Marian, E., Jurca, T., Kacso, I., Borodi, G., and Bratu, I., Rev. Chim., 2009, vol. 60(6), p.599.Google Scholar
  11. 11.
    Marian, E., Cavalui, S., Jarcai, T., Banicai, F., and Bratu, I., J. Pharmacia, 2010, vol. 58(6), p.749.Google Scholar
  12. 12.
    Altun, Ö. and Suözer, M., J. Mol. Struct., 2017, vol. 1149, p. 307. doi 10.1016/j.molstruc.2017.07.069CrossRefGoogle Scholar
  13. 13.
    Forizs, E., David, L., Cozar, O., Chis, V., Damian, G., and Csibi, J., J. Mol. Struct., 1999, vol. 482–483, p. 143. doi 10.1016/S0022-2860(98)00843-6CrossRefGoogle Scholar
  14. 14.
    Aoki, K. and Yamazaki, H., J. Chem. Soc., Chem. Commun., 1980, p. 186. doi 10.1039/C39800000186Google Scholar
  15. 15.
    Griffith, E.H. and Amma, E.L., J. Chem. Soc., Chem. Commun., 1979, p. 322. doi 10.1039/C39790000322Google Scholar
  16. 16.
    Cozak, D., Mardhy, A., Olivier, M.E., and Beauchamp, A.L., Inorg. Chem., 1986, vol. 25, p. 2600. doi 10.1021/ic00235a023CrossRefGoogle Scholar
  17. 17.
    Lorberth, J., Massa, W., Essawi, M.E., and Labib, L., Angew. Chem., Int. Ed. Engl., 1988, vol. 27, p. 1160. doi 10.1002/anie.198811601CrossRefGoogle Scholar
  18. 18.
    Colacio, E., Suarez-Varela, J., Dominguez-Vera, J.M., Avila-Roson, J.C., Hidalgo, M.A., and Martin-Ramos, D., Inorg. Chim. Acta, 1992, vol. 202, p. 219. doi 10.1016/S0020-1693(00)86837-1CrossRefGoogle Scholar
  19. 19.
    Bauer, A.W., Kirby, W.A., Sherris, C., and Turck, M., Am. J. Clin. Pathology, 1996, vol. 45, p. 493. PMID: 5325707.CrossRefGoogle Scholar
  20. 20.
    Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, p. 1437. PMID: 3049651.Google Scholar
  21. 21.
    National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M7-A3, Villanova, Pa, 1993.Google Scholar
  22. 22.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. doi 10.1016/0022-1759(83)90303-4CrossRefGoogle Scholar
  23. 23.
    Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A., and Elaasser, M.M., Heterocycles, 2015, vol. 91(6), p. 1227. doi 10.3987/COM-15-13210CrossRefGoogle Scholar
  24. 24.
    Refat, M.S., J. Mol. Struct., 2007, vol. 842, nos. 1–3, p. 24. doi 10.1016/j.molstruc.2006.12.006CrossRefGoogle Scholar
  25. 25.
    Nafisi, S., Shamloo, D.S., Mohajerani, N., and Omidi, A., J. Mol. Struct., 2002, vol. 608(1), p. 1. doi 10.1016/S0022-2860(01)00876-6CrossRefGoogle Scholar
  26. 26.
    Bhatia, S., Kaushik, N.K., and Sodhi, G.S., J. Chem. Res., 1987, vol. 6, p.181.Google Scholar
  27. 27.
    Noms, A.R., Kumar, R., Buncel, E., and Beauchamp, A.L., J. Inorg. Biochem., 1984, vol. 21, p. 277. doi 10.1016/0162-0134(84)85050-3CrossRefGoogle Scholar
  28. 28.
    Cotton, S.A., Polyhedron, 1999, vol. 18, p. 1691. doi 10.1016/S0277-5387(99)00039-XCrossRefGoogle Scholar
  29. 29.
    Fowles, G.W.A., Tidmarst, D.J., and Walton, R.A., J. Chem. Soc., 1969, p. 1546.Google Scholar
  30. 30.
    Kepert, D.L. and Nyholm, R.S., J. Chem. Soc., 1965, vol. 2871.Google Scholar
  31. 31.
    Boorman, P.M. and Reimer, K.J., Can. J. Chem., 1971, vol. 49, p. 2926. doi 10.1139/v71-489CrossRefGoogle Scholar
  32. 32.
    Parish, R.V., Adv. Inorg. Chem. Radiochem., 1966, vol. 9, p. 315. doi 10.1016/S0065-2792(08)60306-4CrossRefGoogle Scholar
  33. 33.
    Harata, M., Nakamura, T., Yakushiji, H., and Okabe, T.H., Mineral Processing and Extractive Metallurgy, 2008, vol. 117(2), p. 95. doi 10.1179/174328508X290876CrossRefGoogle Scholar
  34. 34.
    Kumar, T.S., Kumar, S.R., Rao, M.L., and Prakash, T.L., J. Metallurgy, 2013, vol. 2013, p. 1. Article ID 629341. doi 10.1155/2013/629341Google Scholar
  35. 35.
    Islama, M. and Martinez-Duarte, R., ECS Trans., 2016, vol. 72(1), p. 11. doi 10.1149/07201.0011ecstCrossRefGoogle Scholar
  36. 36.
    X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Klug, H.P., Ed., New York, Wiley, 1974.Google Scholar
  37. 37.
    Velumani, S., Mathew, X., and Sebastian, P.J., Solar Energy Mater. Solar Cells, 2003, vol. 76, p. 359. doi 10.1016/S0927-0248(02)00288-XCrossRefGoogle Scholar
  38. 38.
    Haergreaves, M.K., Pritchard, J.G., and Dave, H.R., Chem. Res., 1970, vol. 70, p. 439. doi 10.1021/cr60266a001Google Scholar
  39. 39.
    Dharmaraj, N., Viswanathamurthi, P., and Natarajan, K., Trans. Met. Chem., 2001, vol. 26, p. 105. doi 10.1023/A:100713240CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryCollege of Science, Princess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  3. 3.Department of Chemistry, Faculty of SciencePort Said UniversityPort SaidEgypt

Personalised recommendations