Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2163–2169 | Cite as

Metal-Drug Interactions: Synthesis and Spectroscopic Characteristics, Surface Morphology, and Pharmacological Activity of Ephedrine–HCl Complexes with Mo(V), Nb(V), Ga(III), and Ge(IV)

  • A. A. El-Habeeb
  • M. S. Refat
Article
  • 9 Downloads

Abstract

Four new Mo(V), Nb(V), Ga(III), and Ge(IV) ephedrine complexes, [Mo(Eph)2(Cl)4].Cl, [Nb(Eph)2(Cl)3], [Ga(Eph)2(Cl)3], and [Ge(Eph)2(Cl)2] are synthesized and characterized. Composition and coordination behavior of ephedrine drug towards Mo(V), Nb(V), Ga(III), and Ge(IV) ions are deduced from microanalysis, IR spectra, molar conductance, magnetic and thermal analysis data. These support coordination of the eph ligand in its neutral state. Ephedrine has two powerful chelating sites, OH and NH, that determine its uni- or bidentate mode of action. IR spectra indicate that Mo(V) and Ga(III) coordinate to ephedrine via nitrogen atom of the NH group as a unidentate chelator with six and five coordination geometry, respectively. On the other hand, Eph ligand behaves as a monoanionic bidentate no chelating agent via the NH and deprotonated OH groups in Nb(V) and Ge(IV) complexes. Mo(V) complex demonstrates electrolytic properties, the other complexes are non-electrolytes in DMSO solutions. TG/DTG analysis makes it possible to calculate the number of solvent molecules in and outside the coordination sphere, and estimate stability of the synthesized complexes. The Eph complexes are screened in vitro for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus) and antifungal (Aspergillus flavus and Candida albicans) activities. Anti-cancer action of the Mo(V) and Ga(III) complexes is assessed against the human hepato cellular carcinoma (HepG-2) tumor cell line (IC50 >1000 μg/mL).

Keywords

Ephedrine Mo(V) Nb(V) Ga(III) Ge(IV) spectroscopic chelation anticancer activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schaneberg, N.T., Crockett, S., Badir, E., and Khan, I.A., Phytochemistry, 2003, vol. 62, p. 911. doi 10.1016/S0031-9422(02)00716-1CrossRefGoogle Scholar
  2. 2.
    Roman, M.C., J. AOAC Int., 2004, vol. 87, p. 1. PMID: 15084081.Google Scholar
  3. 3.
    Pellati, F., and Benvenuti, S., J. Chromatogr. A, 2007, vol. 1161, p. 71. doi 10.1016/j.chroma.2007.05.097CrossRefGoogle Scholar
  4. 4.
    Lieberman, R.L., Bino, A., Mirsky, N., Summers, D.A., and Thompson, R.C., Inorg. Chim. Acta, 2000, vol. 297, p. 1. doi 10.1016/S0020-1693(99)00251-0CrossRefGoogle Scholar
  5. 5.
    Koczon, P., Piekut, J., Borawska, M., and Lewandowski, W., J. Mol. Struct., 2003, vol. 651, p. 67. doi 10.1016/S0022-2860(02)00627-0Google Scholar
  6. 6.
    Cui, X., Joannou, C.L., Hughes, M.N., and Cammack, R., FEMS Microbiol. Lett., 1992, vol. 98, p. 67. doi 10.1111/j.1574-6968.1992.tb05491.CrossRefGoogle Scholar
  7. 7.
    Hueso-Urena, F., Moreno-Ccarretero, M., Romero-Molina, M., Salas-Peregrin, J., Sanchez–Sanchez, M., Alvarez de Cienfuegos-Lopez, G., and Faure, R., J. Inorg. Biochem., 1993, vol. 51, p. 613. doi 10.1016/0162-0134 (93)85033-5CrossRefGoogle Scholar
  8. 8.
    Koczon, P., Piekut, J., Borawska, M., Swislocka, R., and Lewandowski, W., Spectrochim Acta Part A, 2005, vol. 61, p. 1917. doi 10.1016/j.saa.2004.07.022CrossRefGoogle Scholar
  9. 9.
    Koczon, P., Piekut, J., Borawska, M., Swislocka, R., and Lewandowski, W., Anal bioanal chem., 2006, vol. 384, p. 302. doi 10.1007/s00216-005-0158-7CrossRefGoogle Scholar
  10. 10.
    Bauer, A.W., Kirby, W.A., Sherris, C., and Turck, M., Am. J. Clin. Pathology, 1996, vol. 45, p. 493. PMID: 5325707.CrossRefGoogle Scholar
  11. 11.
    Pfaller, M.A., Burmeister, L., Bartlett, M.A., and Rinaldi, M.G., J. Clin. Microbiol., 1988, vol. 26, p. 1437. PMID: 3049651.Google Scholar
  12. 12.
    National Committee for Clinical Laboratory Standards. Performance Volume. Antimicrobial Ausceptibility of Flavobacteria, 1997.Google Scholar
  13. 13.
    National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard M7-A3, Villanova, Pa, 1993.Google Scholar
  14. 14.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 65, p. 55. doi 10.1016/0022-1759(83)90303-4CrossRefGoogle Scholar
  15. 15.
    Gomha, S.M., Riyadh, S.M., Mahmmoud, E.A., and Elaasser, M.M., Heterocycles, 2015, vol. 91(6), p. 1227. doi 10.3987/COM-15-13210CrossRefGoogle Scholar
  16. 16.
    Refat, M.S., J. Mol. Struct., 2007, vol. 842, nos. 1–3, p. 24. doi 10.1016/j.molstruc.2006.12.006CrossRefGoogle Scholar
  17. 17.
    Allinger, N.L., J. Am. Chem. Soc., 1977, vol. 99, p. 8127. doi 10.1021/ja00467a001CrossRefGoogle Scholar
  18. 18.
    Hartl, F., Barbaro, P., Bell, I.M., Clark, R.J.H., Snoeck, T.L., and Vlcek, A., Inorg. Chim. Acta, 1996, vol. 252, p. 157. doi 10.1016/S0020-1693(96)05309-1CrossRefGoogle Scholar
  19. 19.
    Karpshin, T.B., Gehard, M.S., Solomon, E.I., and Raymond, K.N., J. Am. Chem. Soc., 1991, vol. 113(8), p. 2977. doi 10.1021/ja00008a028CrossRefGoogle Scholar
  20. 20.
    Michaud-Soret, I., Andersson, K.K., and Que, L., J. Biochem., 1995, vol. 34(16), p. 5504. doi 10.1021/bi00016a022CrossRefGoogle Scholar
  21. 21.
    Lewandowski, W., Kalinowska, M., and Lewandowska, H., J. Inorg. Biochem., 2005, vol. 99, p. 1407. doi 10.1016/j.jinorgbio.2005.04.010CrossRefGoogle Scholar
  22. 22.
    Ohrstrom, L. and Michaud-Soret, I., J. Phys. Chem., A, 1999, vol. 103, p. 256. doi 10.1021/jp981508fCrossRefGoogle Scholar
  23. 23.
    Noms, A.R., Kumar, R., Buncel, E., and Beauchamp, A.L., J. Inorg. Biochem., 1984, vol. 21, p. 277. doi 10.1016/0162-0134(84)85050-3CrossRefGoogle Scholar
  24. 24.
    Aldridge, S., Baker, R.J., Coombs, N.D., Jones, C., Rose, R.P., Rossin, A., and Willock, D.J., Dalton Trans., 2006, p. 3313. doi 10.1039/B604640A.Google Scholar
  25. 25.
    Martsinko, E.E., Seifullina, I.I., and Verbetskaya, T.G., Russ. J. Coord. Chem., 2005, vol. 31(8), p. 541. doi 10.1007/s11173-005-0133-zCrossRefGoogle Scholar
  26. 26.
    Kim, H.K., Choi, Y.H., Erkelens, C., Lefeber, A.W.M., and Verpoorte, R., Chem. Pharm. Bull., 2005, vol. 53, no. 1, p. 105. doi 10.1248/cpb.53.105CrossRefGoogle Scholar
  27. 27.
    Chakraborty, S.P. and Krishnamurthy, N., J. Powder Metall. Min., 2013, vol. 2(3), p. 1. doi 10.4172/2168-9806.1000113Google Scholar
  28. 28.
    Kumar, T.S., Kumar, S.R., Rao, M.L., and Prakash, T.L., J. Metallurgy, 2013, vol. 2013, p. 1, Article ID 629341. doi 10.1155/2013/629341Google Scholar
  29. 29.
    Yarema, M., Wörle, M., Rossell, M.D., Erni, R., Caputo, R., Protesescu, L., Kravchyk, K.V., Dirin, D.N., Lienau, K., von Rohr, F., Schilling, A., Nachtegaal, M., and Kovalenko, M.V., J. Am. Chem. Soc., 2014, vol. 136, p. 12422. doi 10.1021/ja506712dCrossRefGoogle Scholar
  30. 30.
    Gu, Z., Liu, F., Howe, J.Y., Paranthaman, M.P., and Pan, Z., Nanoscale, 2009, vol. 1, p. 347. doi:10.1039/B9NR00040BCrossRefGoogle Scholar
  31. 31.
    Chiu, H.W., Chervin, C.N., and Kauzlarich, S.M., Chem. Mater., 2005, vol. 17, p. 4858. doi:10.1021/cm050674eCrossRefGoogle Scholar
  32. 32.
    X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Klug, H.P., Ed., New York, Wiley, 1974.Google Scholar
  33. 33.
    Dharmaraj, N., Viswanathamurthi, P., and Natarajan, K., Trans. Met. Chem., 2001, vol. 26, p. 105. doi 10.1023/A:100713240CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryCollege of Science, Princess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  3. 3.Department of Chemistry, Faculty of SciencePort Said UniversityPort SaidEgypt

Personalised recommendations