Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2154–2162 | Cite as

Synthesis, Characterization, Computational, Antimicrobial Screening, and MTT Assay of Thiazolidinone Derivatives Containing the Indole and Pyridine Moieties

  • M. Arshad
  • M. Shoeb Khan
  • S. A. Asghar Nami
  • D. Ahmad


A series of novel 2-{[1-(arenesulfonyl)-1H-indol-3-yl]-4-oxo-1,3-thiazolidin-3-yl}pyridine-4-carboxamide derivatives was designed and calculate for their computational properties like physicochemical parameters and bioactivity score. Bioactive compounds 1–8, were then synthesized, Characterized by various spercoscopic techniques and assessed for antibacterial activity against S. aureus, S. epidermidis, P. mirabilis, and E. coli. The percent viability of the cells was carried out by MTT assay using HepG2 cells. The results for antibacterial activity were observed in strong recommendation with the computation results. The synthesized compounds were found to portray better activity and lower cytotoxicity when compared to the standard drug Ciprofloxacin.


2-{[1-(arenesulfonyl)-1H-indol-3-yl]-4-oxo-1,3-thiazolidin-3-yl}pyridine-4-carboxamide computational properties antibacterial and MTT assay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neu, H.C., Science, 1992, vol. 257 p. 1064. doi 10.1126/science.257.5073.1064CrossRefGoogle Scholar
  2. 2.
    Babu, K.R., Eeshwaraiah, B., Aravind, D., Harshadas, M.M., Rallabaldi, M.R., Apurba, B., and Rakeshwar, B., Monatsh. Chem., 2008, vol. 139, p. 179. doi 10.1007/s00706-007-0772-5CrossRefGoogle Scholar
  3. 3.
    Dalhoff, A., Infection, 1994, vol. 22, p. S111. doi 10.1007/BF01793575CrossRefGoogle Scholar
  4. 4.
    Coates, A., Hu, Y., Bax, R., and Page, C., Nat. Rev. Drug. Discov., 2002, vol. 1, p. 895. doi 10.1038/nrd940CrossRefGoogle Scholar
  5. 5.
    Moellering, R.C.Jr., Int. J. Antimicrob. Agents., 2011, vol. 37, p. 2. doi 10.1016/j.ijantimicag.2010.08.018CrossRefGoogle Scholar
  6. 6.
    Arshad, M., Bhat, A.R., Hoi, K.K., Choi, I., and Athar, F., Chinese Chem. Lett., 2017, vol. 28, p. 1559. doi 10.1016/j.cclet.2016.12.037CrossRefGoogle Scholar
  7. 7.
    Meena, K., Kumari, S., Khurana, J. M., Malik, A., Sharma, C., and Panwar, H., Chinese Chem. Lett., 2017, vol. 28, p. 136. doi 10.1016/j.cclet.2016.06.025CrossRefGoogle Scholar
  8. 8.
    Choppara, P., Bethu, M.S.Y., Venkateswara Rao, J., Uday Ranjan, T.J., Siva Prasad, G.V., RajithaDoradla, and Murthy, Y.L.N., Arab. J. Chem., 2015, in press. doi 10.1016/j.arabjc.2015.05.015Google Scholar
  9. 9.
    Ugale, V., Patel, H., Patel, B., and Bari, S., Arab. J. Chem., 2017, vol. 10, p. S389. doi 10.1016/j.arabjc.2012.09.011CrossRefGoogle Scholar
  10. 10.
    Slominska, E.M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M.H., and Smolenski, R.T., Nucleos Nucleot Nucl., 2008, vol. 27, p. 863. doi 10.1081/NCN-59697CrossRefGoogle Scholar
  11. 11.
    Moell, A., Skog, O., Ahlin, E., Korsgren, O., and Frisk, G., J. Med. Virology, 2009, vol. 81, p. 1082. doi 10.1002/jmv.21476CrossRefGoogle Scholar
  12. 12.
    Girgis, A.S., Hosni, H.M., and Barsoum, F.F., Bioorg. Med. Chem., 2006, vol. 14, p. 4466. doi 10.1016/j.bmc.2006.02.031CrossRefGoogle Scholar
  13. 13.
    Spanka, C., Glatthar, R., Desrayaud S., Fendt, M., Orain, D., Troxler, T., and Vranesic, I., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 184. doi 10.1016/j.bmcl.2009.11.001CrossRefGoogle Scholar
  14. 14.
    Omar, K., Geronikaki, A., Zoumpoulakis, P., et al., Bioorg. Med. Chem., 2010, vol. 18, p. 426. doi 10.1016/j.bmc.2009.10.041CrossRefGoogle Scholar
  15. 15.
    Taha, M., Shah, S.A.A., Afifi, M., Zulkeflee, M., Sultan, S., Wadood, A., Rahim. F., and Ismail, N.H., Chinese Chem. Lett., 2017, vol. 28, p. 607. doi 10.1016/j.cclet.2016.10.020CrossRefGoogle Scholar
  16. 16.
    Zhang, J-P., Li, X.-Y., Dong, Y-W., Qin, Y-G., Li, X-L., Song, B-A., and Yang, X-L., Chinese Chem. Lett., 2017, vol. 28, p. 1238. doi 10.1016/j.cclet.2017.02.002CrossRefGoogle Scholar
  17. 17.
    Jain, S., Kumar, A., Kumar, M., and Jain, N., Arab. J. Chem., 2016, vol. 9, p. S290. doi 10.1016/j.arabjc.2011.04.009CrossRefGoogle Scholar
  18. 18.
    Chen, H., Xing, S-K., Gao, F., Li, N., Li, X-L., and Meng, M., Chinese Chem. Lett., 2016, vol. 27, p. 938. doi 10.1016/j.cclet.2016.01.041CrossRefGoogle Scholar
  19. 19.
    Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug Deliv. Rev., 1997, vol. 23, p. 3. doi 10.1016/S0169-409X(00)00129-0CrossRefGoogle Scholar
  20. 20.
    Patil, S.G., Rahul, R., Mangesh, B., Swami, S., Kotharkar, N., and Darade, K., Chinese Chem. Lett., 2011, vol. 22, p. 883. doi 10.1016/j.cclet.2011.03.002CrossRefGoogle Scholar
  21. 21.
    Bhat, A.R., Arshad, M., Lee, E.J., Pokharel, S., Choi, I., and Athar, F., Chem. Biodiv., 2013, vol. 10, p. 2267. doi 10.1002/cbdv.201300009CrossRefGoogle Scholar
  22. 22.
    Arshad, M., Bhat, A.R., Pokharel, S., Lee, E.J., Athar, F., and Choi, I., Eur. J. Med. Chem., 2014, vol. 71, p. 229. doi 10.1016/j.ejmech.2013.11.008CrossRefGoogle Scholar
  23. 23.
    Gupta, M.K., Neelakantan, T.V., Sanghamitra, M., Tyagi, R.K., Dinda, A., Maulik, S., Mukhopadhyay, C.K., and Goswami, S.K., Antioxid. Redox Signal., 2006, vol. 8, p. 1081. doi 10.1089/ars.2006.8.1081CrossRefGoogle Scholar
  24. 24.
    Mosmann, T., J. Immunol. Meth., 1983, vol. 65, p. 55. doi 10.1016/0022-1759(83)90303-4CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. Arshad
    • 1
  • M. Shoeb Khan
    • 2
  • S. A. Asghar Nami
    • 3
  • D. Ahmad
    • 4
  1. 1.Department of Basic Sciences, College of Medicine, Al DawadmiShaqra UniversityShaqraSaudi Arabia
  2. 2.Interdisciplinary Nanotechnology CentreAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Kulliyat, Faculty of Unani MedicineAligarh Muslim UniversityAligarhIndia
  4. 4.College of Pharmacy, Al-DawadmiShaqra UniversityShaqraSaudi Arabia

Personalised recommendations