Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2149–2153 | Cite as

Microwave-Assisted Synthesis and Antimicrobial Activity of 3-(Arylsulfanyl)-4-hydroxy-2H-chromen-2-ones

  • Ch. Anjaiah
  • M. Nagamani
  • Ch. Abraham LincolnEmail author
  • D. Ashok
Article
  • 13 Downloads

Abstract

An efficient microwave-assisted synthesis of 3-(arylsulfanyl)-4-hydroxy-2H-chromen-2-ones by condensation of arenesulfonohydrazides with 4-hydroxy-2H-chromen-2-one in the presence of iodine is described. The synthesized compounds were characterized by spectral data (IR, 1H and 13C NMR, and mass spectra and elemental analyses) and were tested for their in vitro antimicrobial activity against bacterial and fungal organisms.

Keywords

microwave-assisted synthesis 3-(arylsulfanyl)-4-hydroxy-2H-chromen-2-ones antimicrobial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McReynolds, M.D., Dougherty, J.M., and Hanson, P.R., Chem Rev., 2004, vol. 104, p. 2239. doi 10.1021/cr020109kCrossRefGoogle Scholar
  2. 2.
    Perry, N.B., Blunt, J.W., and Munro, M.H.G., Tetrahedron, 1988, vol. 44, no. 6, p. 1727. doi 10.1016/S0040-4020(01)86737-5CrossRefGoogle Scholar
  3. 3.
    Nash, T. and Rice, W., Antimicrob. Agents Chemother., 1998, vol. 42, no. 6, p. 1488. doi 10.1128/AAC.42.6.1488CrossRefGoogle Scholar
  4. 4.
    Yasameen Al-Majedy, K., Abdul Amir Kadhum, H., Ahmed Al-Amiery, A., and Abu Bakar Mohamad, Syst. Rev. Pharm., 2017, vol. 8, no. 1, p. 62. doi 10.5530/srp.2017.1.11CrossRefGoogle Scholar
  5. 5.
    Manohar, K., Manjunath, G., and Raviraj, K., Indian J. Heterocycl. Chem., 2004, vol. 13, p.201.Google Scholar
  6. 6.
    Rajeshwar Rao, V., Srimanth, K., and Vijaya Kumar, P., Indian J. Heterocycl. Chem., 2004, vol. 14, p.141.Google Scholar
  7. 7.
    Yu-Feng Shen, Lei Liu, Chen-Zhang Feng, Yang Hu, Cheng Chen, Gao-Xu Wang and Bin Zhu, Fish & Shellfish Immunology, 2018, vol 81, p. 57. doi 10.1016/j.fsi.2018.07.005CrossRefGoogle Scholar
  8. 8.
    Kostova, I., Raleva, S., Genova, P., and Argirova, R., Bioinorg. Chem. Appl., 2006, article ID 68 274. doi 10.1155/BCA/2006/68274Google Scholar
  9. 9.
    Keri, R.S., Sasidhar, B.S., Nagaraja, B.M., and Santos, M.A., Eur. J. Med. Chem., 2015, vol. 15, p. 257. doi 10.1016/j.ejmech.2015.06.017CrossRefGoogle Scholar
  10. 10.
    Anjaiah, Ch., Nagamani, M., Abraham Lincoln, Ch., and Ashok, D., Russ. J. Gen. Chem., 2017, vol. 87, no. 12, p. 2930. doi 10.1134/S1070363217120337CrossRefGoogle Scholar
  11. 11.
    Ashok, D., Ravi, S., Vijaya Lakshmi, B., and Ganesh, A., Russ. J. Gen. Chem., 2014, vol. 84, no. 11, p. 2211. doi 10.1134/S1070363214110280CrossRefGoogle Scholar
  12. 12.
    Ashok, D., Ganesh, A., Vijaya Lakshmi, B., and Ravi, S., Russ. J. Gen. Chem., 2014, vol. 84, no. 6, p. 1237. doi 10.1134/S1070363214060309CrossRefGoogle Scholar
  13. 13.
    Ashok, D., Madhuri, E.V.L., Sarasija, M., Sree Kanth, S., Vijjulatha, M., Alaparthid, M.D., and Sagurth, S.R., RSC Adv., 2017, vol. 7, p. 25 710. doi 10.1039/C7RA01550JGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Ch. Anjaiah
    • 1
  • M. Nagamani
    • 1
  • Ch. Abraham Lincoln
    • 1
    Email author
  • D. Ashok
    • 1
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations