Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2144–2148 | Cite as

Synthesis of Amphiphilic Oligomers of Acrylic Acid

  • Ya. O. Mezhuev
  • O. Yu. Sizova
  • A. L. Luss
  • M. I. Shtilman
  • Yu. V. Korshak


Synthesis of amphiphilic oligomers of acrylic acid via radical polymerization in the presence of thiols as molecular mass regulators is described. The effect of the length of the introduced hydrophobic terminal group on the critical micellization concentration of the acrylic acid oligomers has been elucidated. It has been shown that the incorporation of an antituberculous drug (prothionamide) in the micelles of acrylic acid oligomers is enhanced with the increase in the length of the hydrophobic moiety. The preparation of hydroxyapatite-filled calcium-polycarboxylate bone cements containing prothionamide (promising for the sealing of postoperative cavities) is described.


amphiphilic polymers polyacrylic acid surfactant prothionamide thiols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holmberg, K., Jonsson, B., Kronberg, B., and Lindman, B., Surfactants and Polymers in Aqueous Solution, London: John Wiley and Sons, 2002.CrossRefGoogle Scholar
  2. 2.
    Meng, J.-Y., Tang X-F., Li, W., Shi, H.-F., and Zhang, X.-X., Thermochim. Acta, 2013, vol. 558, p. 83. doi 10.1016/j.tca.2013.02.023CrossRefGoogle Scholar
  3. 3.
    Hu, J., Yu, H., and Chen, Y.M., J. Macromol. Sci. (B), 2006, vol. 45, p. 615. doi 10.1080/00222340600770210CrossRefGoogle Scholar
  4. 4.
    Mihaylova, M.D., Krestev, V.P., Kresteva, M.N., Amzill, A., and Berlinova, I.V., Eur. Polym. J., 2001, vol. 37, p. 233. doi 10.1016/S0014-3057(00)00103-8CrossRefGoogle Scholar
  5. 5.
    Balci, M., Alli, A., Hazer, B., Üven, O., Cavicchi, K., and Cakmak, M., Polym. Bull., 2010, vol. 64, p. 691. doi 10.1007/s00289-009-0211-3CrossRefGoogle Scholar
  6. 6.
    Förster, S. and Antonietti, M., Adv. Mater., 1998, vol. 10, p. 195. doi 10.1002/(SICI)1521-4095(199802) 10:3<195::AID-ADMA195>3.0.CO;2-VCrossRefGoogle Scholar
  7. 7.
    Buback, M. and van Herk, A., Radical Polymerization: Kinetics and Mechanism, London: Wiley-VCH, 2007.CrossRefGoogle Scholar
  8. 8.
    Henriquez, C., Bueno, C., Lissi, E.A., and Encinas, M.V., Polymer, 2003, vol. 44, p. 5559. doi 10.1016/S0032-3861(03)00581-0CrossRefGoogle Scholar
  9. 9.
    Torchilin, V.P., Levchenko, K.S., Whiteman, K.R., Yaroslavov, A.A., Tsatsakis, A.M., Rizos, A.K., Michailova, E.V., and Shtilman, M.I., Biomaterials, 2001, vol. 22, no. 22, p. 3035. doi 10.1016/S0142-9612 (01)00050-3CrossRefGoogle Scholar
  10. 10.
    Luss, A.L., Kulikov, P.P., Romme, S.B., Andersen, C.L., Pennisi, C.P., Docea, A.O., Kuskov, A.N., Velonia, K., Mezhuev, Ya.O., Shtilman, M.I., Tsatsakis, A.M., and Gurevich, L., Nanomed., 2018, vol. 13, no. 7, p. 703. doi 10.2217/nnm-2017-0311CrossRefGoogle Scholar
  11. 11.
    Alifragis, J., Rizos, A., Tsatsakis, A.M., Tzatzarakis, M., and Shtilman, M.I., J. Non-Cryst. Solids, 2002, vol. 307, p. 882. doi 10.1016/S0022-3093(02)01540-5CrossRefGoogle Scholar
  12. 12.
    Sizova, O.Yu., Sizova Ya.O., Kulikov, P.P., Panov, A.V., Osadchenko, S.V., Pokhil, S.E., Luss, A.L., Plyushchii, I.V., and Shtil’man, M.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, p. 910. doi 10.1134/S1070427217060118CrossRefGoogle Scholar
  13. 13.
    Rangel-Yagui, C.O., Pessoa-Jr, A., and Tavares, L.C., J. Pharm. Pharmaceut. Sci., 2005, vol. 8, no. 2, p.147.Google Scholar
  14. 14.
    Buchachenko, A.L. and Sukhanova, O.P., Russ. Chem. Rev., 1967, vol. 36, no. 3, p. 192. doi 10.1070/RC1967v036n03ABEH001597CrossRefGoogle Scholar
  15. 15.
    Reactivity, Mechanism and Structure in Polymer Chemistry, Jenkins, A.D. and Ledwith, A., Eds., London: Wiley, 1974.Google Scholar
  16. 16.
    Oudian, J., Fundamentals of Polymer Chemistry, Moscow: Mir, 1974.Google Scholar
  17. 17.
    Gao, A., Liang, X., Li, L., and Cui, J., J. Mol. Model., 2013, vol. 19, no. 8, p. 3225. doi 10.1007/s00894-013-1855-3CrossRefGoogle Scholar
  18. 18.
    Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, New York: John Wiley and Sons, 2005.Google Scholar
  19. 19.
    Sánchez-Márquez, J.A., Fuentes-Ramírez, R., Cano-Rodríguez, I., Gamiño-Arroyo, Z., Rubio-Rosas, E., Kenny, J.M., and Rescignano, N., Int. J. Polym. Sci., 2015, vol. 2015, p. 1. doi 10.1155/2015/320631CrossRefGoogle Scholar
  20. 20.
    Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micel Formation in Surfactant Solutions), SPb: Lan’, 2016.Google Scholar
  21. 21.
    Brennan, P.J. and Young, D.B., Tuberculosis, 2008, vol. 88, no. 2, p. 139. doi 10.1016/S1472-9792(08)70020-9CrossRefGoogle Scholar
  22. 22.
    Klekamp, J., Dawson, J.M., Haas, D.W., DeBoer, D., and Christie, M., J. Arthroplasty, 1999, vol. 14, no. 3, p. 339. doi 10.1016/S0883-5403(99)90061-XCrossRefGoogle Scholar
  23. 23.
    Han, C.D., Oh, T., Cho, S.N., Yang, J.H., and Park, K.K., Clin. Orthop. Relat. Res., 2013, vol. 471, no. 7, p. 2400. doi 10.1007/s11999-013-2899-5CrossRefGoogle Scholar
  24. 24.
    Lee, J.H., Han, C.D., Cho S-N., Yang, I.H., Lee, W.S., Baek S-H., Shin, J.W., Husein, K.E.I., and Park, K.K., Clin. Orthop. Relat. Res., 2017, vol. 475, no. 11, p. 2795. doi 10.1007/s11999-017-5470-yCrossRefGoogle Scholar
  25. 25.
    Paz, E., Sanz-Ruiz, P., Abenojar, J., Vaquero-Martin, J., Forriol, F., and Del Real, J.C., J. Arthroplasty, 2015, vol. 30, no. 8, p. 1423. doi 10.1016/j.arth.2015.02.040CrossRefGoogle Scholar
  26. 26.
    Mehboob, H. and Chang, S.H., Composite Structures, 2014, vol. 118, p. 328. doi 10.1016/j.compstruct.2014.07.052CrossRefGoogle Scholar
  27. 27.
    Bhowmik, R., Katti, K.S., and Katti, D., Polymer, 2007, vol. 48, p. 664. doi 10.1016/j.polymer.2006.11.015CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Ya. O. Mezhuev
    • 1
  • O. Yu. Sizova
    • 1
  • A. L. Luss
    • 1
  • M. I. Shtilman
    • 1
  • Yu. V. Korshak
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations