Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2125–2132 | Cite as

Chemical and Electrochemical Syntheses, Structure, and Luminescent Properties of Zinc and Cadmium Complexes with N-{2-[(E)-(4-tert-Butylphenyl)iminomethyl]phenyl}-4-methylbenzenesulfonamide

  • T. V. LifintsevaEmail author
  • A. S. Burlov
  • V. G. Vlasenko
  • Yu. V. Koshchienko
  • E. I. Mal’tsev
  • A. V. Dmitriev
  • D. A. Lypenko
  • A. L. Trigub
  • D. A. Garnovskii
Article
  • 14 Downloads

Abstract

New Zn(II) and Cd(II) complexes with N-{2-[(E)-(4-tert-butylphenyl)iminomethyl]phenyl}-4-methylbenzenesulfonamide were synthesized by chemical and electrochemical methods. The ligand and metal complexes were characterized by the methods of IR, 1H NMR, electron absorption spectroscopy, and X-ray absorption spectroscopy and by quantum chemical calculations. Electroluminescent devices with zinc and cadmium complexes were fabricated as emitter layers, which showed radiation brightness of 460 cd/m2 (15 V) with a maximum at 502 nm and 140 cd/m2 (15 V) with a maximum at 535 nm, respectively.

Keywords

azomethines metal chelates electroluminescent devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pushkarev, A.P. and Bochkarev, M.N., Russ. Chem. Rev., 2016, vol. 85, no. 12, p. 1338. doi 10.1070/RCR4665CrossRefGoogle Scholar
  2. 2.
    Burlov, A.S., Vlasenko, V.G., Garnovskii, D.A., Uraev, A.I., Mal’tsev, E.I., Lypenko, D.A., and Vannikov, A.V., Elektrolyumenestsentnye organicheskie svetodiody na osnove koordinatsionnykh soedinenii metallov (Electroluminescent Organic Light-Emitting Diodes Based on Metals Coordination Compounds), Rostov-on-Don: YuFU, 2015.Google Scholar
  3. 3.
    Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., Makarova, N.I., Zubenko, A.A., Drobin, Yu.D., Borodkin, G.S., Metelitsa, A.V., Zubavichus, Ya.V., and Garnovskii, D.A., Polyhedron, 2018, vol. 144, p. 249. doi 10.1016/j.poly.2018.01.020CrossRefGoogle Scholar
  4. 4.
    Burlov, A.S., Koshchienko, Yu.V., Makarova, N.I., Kuz’menko, T.A., Chesnokov, V.V., Kiskin, M.A., Nikolaevskii, S.A., Garnovskii, D.A., Uraev, A.I., Vlasenko, V.G., and Metelitsa, A.V., Synth. Met., 2016, vol. 220, p. 543. doi 10.1016/j.synthmet.2016.06.025CrossRefGoogle Scholar
  5. 5.
    Burlov, A.S., Vlasenko, V.G., Dmitriev, A.V., Chesnokov, V.V., Uraev, A.I., Garnovskii, D.A., Zubavichus, Y.V., Trigub, A.L., Vasilchenko, I.S., Lypenko, D.A., Mal’tsev, E.I., Lifintseva, T.V., and Borodkin, G.S., Synth. Met., 2015, vol. 203, p. 156. doi 10.1016/j.synthmet.2015.02.028CrossRefGoogle Scholar
  6. 6.
    Metelitsa, A.V., Burlov, A.S., Bezuglyi, S.O., Borodkina, I.G., Bren, V.A., Garnovskii, A.D., and Minkin, V.I., Russ. J. Coord. Chem., 2006, vol. 32, no. 12, p. 858. doi 10.1134/S1070328406120025CrossRefGoogle Scholar
  7. 7.
    Burlov, A.S., Mal’tsev, E.I., Vlasenko, V.G., Garnovskii, D.A., Dmitriev, A.V., Lypenko, D.A., Vannikov, A.V., Dorovatovskii, P.V., Lazarenko, V.A., Zubavichus, Ya.V, and Khrustalev, V.N., Polyhedron, 2017, vol. 133, p. 231. doi 10.1016/j.poly.2017.05.045CrossRefGoogle Scholar
  8. 8.
    Burlov, A.S., Vlasenko, V.G., Makarova, N.I., Lysenko, K.A., Chesnokov, V.V., Borodkin, G.S., Vasilchenko, I.S., Uraev, A.I., Garnovskii, A.D., and Metelitsa, A.V., Polyhedron, 2016, vol. 107, p. 153. doi 10.1016/j.poly.2015.12.048CrossRefGoogle Scholar
  9. 9.
    Sano, T., Nishio, Y., Hamada, Y., Takahash, H., and Usuki, T., J. Mater. Chem., 2000, vol. 10, no. 1, p. 157. doi 10.1039/A903239HCrossRefGoogle Scholar
  10. 10.
    Chen, L., Qiao, J., Xie, J., Duan, L., Zhang, D., Wang, L., Qiu, Y., and Chen, L., Inorg. Chim. Acta, 2009, vol. 362, no. 7, p. 2327. doi 10.1016/j.ica.2008.10.016CrossRefGoogle Scholar
  11. 11.
    Pivovarov, A.P., Kaplunov, M.G., Yakushchenko, I.K., Belov, M.Yu., Nikolaeva, G.V., and Efimov, O.N., Russ. Chem. Bull., 2002, vol. 51, no. 1, p. 67. doi 10.1023/A:1015053512033CrossRefGoogle Scholar
  12. 12.
    Kaplunov, M.G., Yakushchenko, I.K., Krasnikova, S.S., Shamaev, S.N., Pivovarov, A.P., and Efimov, O.N., Russ. Chem. Bull., 2004, vol. 53, no. 10, p. 2148. doi 10.1007/s11172-005-0088-8CrossRefGoogle Scholar
  13. 13.
    Bormejo, M.R., Vazques, M., Sanmartín, J., García-Deibe, A.M., Fondo,, M., and Lodeiro, C., New J. Chem., 2002, vol. 26, p. 1365. doi 10.1039/b201433pCrossRefGoogle Scholar
  14. 14.
    Burlov, A.S., Garnovskii, D.A., Kuznetsova, L.I., Volbushko, N.V., Korshunov, O.Yu., Asmaev, O.T., Kharisov, B.I., Blanko, L.M., and Garnovskii, A.D., Koord. Khim., 1998, vol. 24, no. 12, p.915.Google Scholar
  15. 15.
    Garnovskii, A.D., Burlov, A.S., Metelitsa, A.V., Borodkina, I.G., Lysenko, K.A., Bezuglyi, S.O., Garnovskaya, E.D., Sennikova, E.V., Borodkin, G.S., and Garnovskii, D.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 2, p. 292. doi 10.1134/S1070363210020180CrossRefGoogle Scholar
  16. 16.
    Burlov, A.S., Chesnokov, V.V., Vlasenko, V.G., Garnovskii, D.A., Mal’tsev, E.I., Dmitriev, A.V., Lypenko, D.A., Borodkin, G.S., and Revinskii, Y.V., Russ. Chem. Bull., 2014, vol. 63, no. 8, p. 1753. doi 10.1007/s11172-014-0663-yCrossRefGoogle Scholar
  17. 17.
    Burlov, A.S., Mal’tsev, E.I., Vlasenko, V.G., Dmitriev, A.V., Lypenko, D.A., Garnovskii, D.A., Uraev, A.I., Borodkin, G.S., and Metelitsa, A.V., Russ. Chem. Bull., 2014, vol. 63, no. 8, p. 1759. doi 10.1007/s11172-014-0664-xCrossRefGoogle Scholar
  18. 18.
    Chernova, N.I., Ryabokobylko, Yu.S., Brudz’, V.G., and Bolotin, B.M., Zh. Org. Khim., 1971, vol. 7, p. 1680.Google Scholar
  19. 19.
    Rodriguez, L., Labisbal, E., Sousa-Pedrares, A., Romero, J., Garcia Vazquez, J-A., and Sousa, A., Z. Anorg. Allg. Chem., 2007, vol. 633, p. 1832. doi 10.1002/zaac.200700209CrossRefGoogle Scholar
  20. 20.
    Vazquez, M., Bermejo, M.R., Licchelli, M., Gonzalez-Noya, A.M., Pedrido, R.M., Sangregorio, C., Sorace, L., Garcia-Deibe, A.M., and Sanmartin, J., Eur. J. Inorg. Chem., 2005, no. 17, p. 3479. doi 10.1002/ejic.200500142CrossRefGoogle Scholar
  21. 21.
    Vazquez, M., Bermejo, M.R., Fondo, M., Garcia-Deibe, A.M., Sanmartin, J., Pedrido, R., Sorace, L., and Gatteschi, D., Eur. J. Inorg. Chem., 2003, no. 6, p. 1128. doi 10.1002/ejic.200390144CrossRefGoogle Scholar
  22. 22.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, p. 441. doi 10.1021/j100785a001CrossRefGoogle Scholar
  23. 23.
    Minaev, B.F., Baryshnikov, G.V., Korop, A.A., Minaeva, V.A., and Kaplunov, M.G., Optics Spectrosc., 2012, vol. 113, no. 3, p. 298. doi 10.1134/S0030400X12070132CrossRefGoogle Scholar
  24. 24.
    Minaev, B.F., Baryshnikov, G.V., Korop, A.A., Minaeva, V.A., and Kaplunov, M.G., Optics Spectrosc., 2013, vol. 114, no. 1, p. 30. doi 10.1134/S0030400X13010207CrossRefGoogle Scholar
  25. 25.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Ya.V., Nucl. Instr. Meth. Phys. Res. (A), 2009, vol. 603, p. 95. doi 10.1016/j.nima. 2008 12.167CrossRefGoogle Scholar
  26. 26.
    Newville, M., J. Synchrotron Rad., 2001, vol. 8, p. 96. doi 10.1107/S0909049500016290CrossRefGoogle Scholar
  27. 27.
    Zabinski, S.I., Rehr, J.J., Ankudinov,A., and Alber, R.C., Phys. Rev., 1995, vol. 52, p. 2995. doi 10.1103/PhysRevB.52.2995.CrossRefGoogle Scholar
  28. 28.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, Jr. T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui Piskorz, Q., Komaromi, I., Martin, R.L., Fox D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA, USA, 2003.Google Scholar
  29. 29.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  30. 30.
    Lee, C., Yang, W., and Par, R.G., Phys. Rev. B., 1988, vol. 37, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  31. 31.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 270. doi 10.1063/1.448799CrossRefGoogle Scholar
  32. 32.
    Petersson, G.A., Bennett, A., Tensfeldt, T.G., Allaham, M.A., Shirley, W.A., and Mantzaris, J., J. Chem. Phys., 1988, vol. 89, vol, p. 2193. doi 10.1063/1.455064CrossRefGoogle Scholar
  33. 33.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, p. 6158. doi 10.1063/1.478522CrossRefGoogle Scholar
  34. 34.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. doi 10.1021/cr9904009CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Lifintseva
    • 1
    Email author
  • A. S. Burlov
    • 2
  • V. G. Vlasenko
    • 3
  • Yu. V. Koshchienko
    • 2
  • E. I. Mal’tsev
    • 4
  • A. V. Dmitriev
    • 4
  • D. A. Lypenko
    • 4
  • A. L. Trigub
    • 5
  • D. A. Garnovskii
    • 6
  1. 1.Chemical FacultySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  5. 5.“Kurchatov Institute” National Research CentreMoscowRussia
  6. 6.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations