Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2058–2066 | Cite as

Electrochemical Reduction of Trichlorobiphenyls: Mechanism and Regioselectivity

  • V. P. Boyarskii
  • M. V. Sangaranarayanan
  • I. A. Boyarskaya
  • E. G. Tolstopyatova
  • T. G. Chulkova
Article
  • 12 Downloads

Abstract

The regioselectivity of electrochemical reduction of four trichlorobiphenyls (PCB 28–30 and PCB 37) was studied by cyclic voltammetry and bulk electrolysis. The number of stages and mechanism of electrochemical reduction of each of the examined substrate were inferred on the basis of the experimental electron transfer coefficients and calculated (DFT) bond lengths and potential energy surface sections. GC/MS analysis of the controlled potential electrolysis products showed that chlorine atom in the disubstituted ring of trichlorobiphenyls is reduced more readily than in the monosubstituted ring and that the rate of chlorine reduction changes in the series o-Cl > p-Cl > m-Cl.

Keywords

polychlorobiphenyls cyclic voltammetry preparative electrolysis DFT calculations electron transfer mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van den Berg, M., Birnbaum, L.S., Denison, M., de Vito, M., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., and Peterson, R.E., Toxicol. Sci., 2006, vol. 93, no. 2, p. 223. doi 10.1093/toxsci/kfl055CrossRefGoogle Scholar
  2. 2.
    Laine, D.F. and Cheng, I.F., Microchem. J., 2007, vol. 85, no. 2, p. 183. doi 10.1016/j.microc.2006.07.002CrossRefGoogle Scholar
  3. 3.
    Zhen, H., Du, S., Rodenburg, L.A., Mainelis, G., and Fennell, D.E., Water Res., 2014, vol. 52, p. 51. doi 10.1016/j.watres.2013.12.038CrossRefGoogle Scholar
  4. 4.
    Jugder, B.E., Ertan, H., Lee, M., Manefield, M., and Marquis, C.P., Trends Biotechnol., 2015, vol. 33, no. 10, p. 595. doi 10.1016/j.tibtech.2015.07.004CrossRefGoogle Scholar
  5. 5.
    Yang, Y., Huang, J., Wang, S., Deng, S., Wang, B., and Yu, G., Appl. Catal., B, 2013, vols. 142–143, p. 568. doi 10.1016/j.apcatb.2013.05.048CrossRefGoogle Scholar
  6. 6.
    Fan, G., Wang, Y., Fang, G., Zhu, X., and Zhou, D., Environ. Sci., 2016, vol. 18, p. 1140. doi 10.1039/C6EM00320FGoogle Scholar
  7. 7.
    Fan, G., Cang, L., Gomes, H.I., and Zhou, D., Chemosphere, 2016, vol. 144, p. 138. doi 10.1016/j.chemosphere.2014.08.006CrossRefGoogle Scholar
  8. 8.
    Du, C., Lu, S., Wang, Q., Buekens, A.G., Ni, M., and Debecker, D.P., Chem. Eng. J., 2018, vol. 334, p. 519. doi 10.1016/j.cej.2017.09.018CrossRefGoogle Scholar
  9. 9.
    Agarwal, S., Al-Abed, S.R., and Dionysiou, D.D., Environ. Sci. Technol., 2007, vol. 41, p. 3722. doi 10.1021/es062886yCrossRefGoogle Scholar
  10. 10.
    Choi, H., Agarwal, S., and Al-Abed, S.R., Environ. Sci. Technol., 2009, vol. 43, no. 2, p. 488. doi 10.1021/es8015815CrossRefGoogle Scholar
  11. 11.
    Gomes, H.I., Dias-Ferreira, C., Ottosen, L.M., and Ribeiro, A.B., J. Colloid Interface Sci., 2014, vol. 433, p. 189. doi 10.1016/j.jcis.2014.07.022CrossRefGoogle Scholar
  12. 12.
    Wu, Y., Wu, Z., Huang, X., Simonnot, M.-O., Zhang, T., and Qiu, R., Environ. Sci. Pollut. Res. Int., 2015, vol. 22, no. 1, p. 555. doi 10.1007/s11356-014-3278-9CrossRefGoogle Scholar
  13. 13.
    Khaibulova, T.S., Boyarskaya, I.A., Larionov, E., and Boyarskiy, V.P., Molecules, 2014, vol. 19, no. 5, p. 5876. doi 10.3390/molecules19055876CrossRefGoogle Scholar
  14. 14.
    Zabelina, O.N., Pervova, M.G., Kirichenko, V.E., Yatluk, Yu.G., and Saloutin, V.I., Russ. J. Appl. Chem., 2006, vol. 79, no. 5, p. 791. doi 10.1134/S1070427206050181CrossRefGoogle Scholar
  15. 15.
    Gorbunova, T.I., Pervova, M.G., Trushina, E.B., Pavlyshko, S.V., Zapevalov, A.Ya., and Saloutin, V.I., Russ. J. Appl. Chem., 2012, vol. 85, no. 10, p. 1622. doi 10.1134/S1070427212100254CrossRefGoogle Scholar
  16. 16.
    Gorbunova, T.I., Pervova, M.G., Saloutin, V.I., and Chupakhin, O.N., Russ. J. Gen. Chem., 2012, vol. 82, no. 1, p. 138. doi 10.1134/S1070363212010227CrossRefGoogle Scholar
  17. 17.
    Gorbunova, T.I., Subbotina, J.O., Saloutin, V.I., and Chupakhin, O.N., J. Hazard. Mater., 2014, vol. 278, p. 491. doi 10.1016/j.jhazmat.2014.06.035CrossRefGoogle Scholar
  18. 18.
    Khaibulova, T.Sh., Boyarskaya, I.A., Polukeev, V.A., and Boyarskii, V.P., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2318. doi 10.1134/S1070363216100121CrossRefGoogle Scholar
  19. 19.
    Plotnikova, K.A., Pervova, M.G., Gorbunova, T.I., Khaibulova, T.Sh., Boyarskii, V.P., Saloutin, V.I., and Chupakhin, O.N., Dokl. Chem., 2017, vol. 476, no. 1, p. 206. doi 10.1134/S0012500817090038CrossRefGoogle Scholar
  20. 20.
    Alonso, F., Beletskaya, I.P., and Yus, M., Chem. Rev., 2002, vol. 102, no. 11, p. 4009. doi10.1021/cr0102967CrossRefGoogle Scholar
  21. 21.
    Martin, E.T., McGuire, C.M., Mubarak, M.S., and Peters, D.G., Chem. Rev., 2016, vol. 116, no. 24, p. 15 198. doi 10.1021/acs.chemrev.6b00531CrossRefGoogle Scholar
  22. 22.
    Farwell, S.O., Beland, F.A., and Geer, R.D., Anal. Chem., 1975, vol. 47, p. 895. doi 10.1021/ac60356a043CrossRefGoogle Scholar
  23. 23.
    Matsunaga, A. and Yasuhara, A., Chemosphere, 2005, vol. 58, no. 7, p. 897. doi 10.1016/j.chemosphere.2004.09.048CrossRefGoogle Scholar
  24. 24.
    Muthukrishnan, A., Sangaranarayanan, M.V., Boyarskiy, V.P., and Boyarskaya, I.A., Chem. Phys. Lett., 2010, vol. 490, nos. 4–6, p. 148. doi 10.1016/j.cplett.2010.03.042CrossRefGoogle Scholar
  25. 25.
    Muthukrishnan, A., Boyarskiy, V., Sangaranarayanan, M.V., and Boyarskaya, I., J. Phys. Chem. C, 2012, vol. 116, no. 1, p. 655. doi 10.1021/jp2066474CrossRefGoogle Scholar
  26. 26.
    Webster, R.D., Anal. Chem., 2004, vol. 76, no. 6, p. 1603. doi 10.1021/ac0351724CrossRefGoogle Scholar
  27. 27.
    Nadjo, L. and Saveant, J.M., J. Electroanal. Chem., 1973, vol. 48, p. 113. doi 10.1016/S0022-0728(73)80300-6CrossRefGoogle Scholar
  28. 28.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications, New York: Wiley, 2001, p.243.Google Scholar
  29. 29.
    Nicholson, R.S. and Shain, I., Anal. Chem., 1964, vol. 36, p. 706. doi 10.1021/ac60210a007CrossRefGoogle Scholar
  30. 30.
    Boyarskii, V.P., Sangaranarayanan, M.V., Khaibulova, T.Sh., and Boyarskaya, I.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 4, p. 800. doi 10.1134/S1070363210040201CrossRefGoogle Scholar
  31. 31.
    Zhang, N., Blowers, P., and Frarrell, J., Environ. Sci. Technol., 2005, vol. 39, p. 612. doi 10.1021/es049480aCrossRefGoogle Scholar
  32. 32.
    Luque, F.J., Bachs, M., Alemán, C., and Orozco, M., J. Comput. Chem., 1996, vol. 17, p. 806. doi 10.1002/(SICI)1096-987X(199605)17:7<806::AID-JCC5>3.0.CO;2-WCrossRefGoogle Scholar
  33. 33.
    Bylaska, E.J., Dupuis, M., and Tratnyek, P.G., J. Phys. Chem. A, 2008, vol. 112, p. 3712. doi 10.1021/jp711021dCrossRefGoogle Scholar
  34. 34.
    Valiev, M., Bylaska, E.J., Dupuis, M., and Tratnyek, P.G., J. Phys. Chem. A, 2008, vol. 112, p. 2713. doi 10.1021/jp7104709CrossRefGoogle Scholar
  35. 35.
    Costentin, C., Robert, M., and Saveant, J.M., J. Am. Chem. Soc., 2004, vol. 126, p. 16834. doi 10.1021/ja045294tCrossRefGoogle Scholar
  36. 36.
    Cardinale, A., Isse, A.A., Gennaro, A., Robert, M., and Saveant, J.M., J. Am. Chem. Soc., 2002, vol. 124, p. 13 533. doi 10.1021/ja0275212CrossRefGoogle Scholar
  37. 37.
    Miltsov, S.A., Karavan, V.S., Boyarsky, V.P., Gómez-de Pedro, S., Alonso-Chamarro, J., and Puyol, M., Tetrahedron Lett., 2013, vol. 54, no. 10, p. 1202. doi 10.1016/j.tetlet.2012.12.060CrossRefGoogle Scholar
  38. 38.
    Ryabukhin, D.S., Sorokoumov, V.N., Savicheva, E.A., Boyarskiy, V.P., Balova, I.A., and Vasilyev, A.V., Tetrahedron Lett., 2013, vol. 54, no. 19, p. 2369. doi 10.1016/j.tetlet.2013.02.086CrossRefGoogle Scholar
  39. 39.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J. Gaussian 09, Revision C.01, Wallingford CT: Gaussian, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. P. Boyarskii
    • 1
  • M. V. Sangaranarayanan
    • 2
  • I. A. Boyarskaya
    • 1
  • E. G. Tolstopyatova
    • 1
  • T. G. Chulkova
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Madras Institute of TechnologyChennai, Tamil NaduIndia

Personalised recommendations