Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 10, pp 2044–2049 | Cite as

β-Elimination in 1,1,1-Trichloro-2,2-bis(4-nitrophenyl)ethane by the Action of Sodium Nitrite in Dipolar Aprotic Solvents

  • E. A. Guzov
  • V. N. Kazin
  • A. A. Zhukova
Article

Abstract

The kinetics of dehydrochlorination of 1,1,1-trichloro-2,2-bis(4-nitrophenyl)ethane with sodium nitrite in dipolar aprotic solvents have been studied. Quantum chemical simulation of the process has been performed, and its thermodynamic parameters have been determined. The effects of dissociation and solvation on the rate constant have been considered. The reaction mechanism has been identified as E2H.

Keywords

1,1,1-trichloro-2,2-bis(4-nitrophenyl)ethane nitrite ion quantum chemical simulation solvation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rusanov, A.L., Keshtov, M.L., Keshtova, S.V., Petrovskii, P.V., and Kundina, Yu.F., Polymer Sci., Ser. B, 2000, vol. 42, no. 11, p.301.Google Scholar
  2. 2.
    Keshtov, M.L., Rusanov, A.L., Kireev, V.V., Keshtova, S.V., Petrovskii, P.V., and Kirillov, A.A., Polym. Sci., Ser. A, 2001, vol. 43, no. 6, p. 588Google Scholar
  3. 3.
    Batanero, B., Ramirez-Moreno, M., and Barba, F., Tetrahedron Lett., 2016, vol. 57, p. 2290. doi 10.1016/j.tetlet.2016.04.046CrossRefGoogle Scholar
  4. 4.
    Rusanov, A.L., Keshtov, M.L., Keshtova, S.V., Petrovskii, P.V., and Kundina, Yu.F., Polymer Sci., Ser. B, 2000, vol. 42, no. 11, p.314.Google Scholar
  5. 5.
    Qin, W., Fang, G., Wang, Y., Wu, T., and Zhu, C., Chemosphere, 2016, vol. 148, p. 68. doi 10.1016/j.chemosphere.2016.01.020CrossRefGoogle Scholar
  6. 6.
    Neerja, Grewal, J., Bhattacharya, A., Kumar, S., Singh, D.K., and Khare, S.K., J. Environ. Sci. Health, Part B, 2016, vol. 51, no. 12, p. 809. doi 10.1080/03601234.2016.1208455CrossRefGoogle Scholar
  7. 7.
    Erdem, Z. and Cutright, T.J., Environ. Earth Sci., 2016, vol. 75, no. 18, p. 1267. doi 10.1007/s12665-016-6057-8CrossRefGoogle Scholar
  8. 8.
    Hall, A.K., Harrowfield, J.M., Hart, R.J., and McCormick, P.G., Environ. Sci. Technol., 1996, vol. 30, no. 12, p. 3401. doi 10.1021/es950680jCrossRefGoogle Scholar
  9. 9.
    Liu, C., Li, S., Gao, R., Dang, J., Wang, W., and Zhang, Q., J. Environ. Sci., 2014, vol. 26, p. 601. doi 10.1016/S1001-0742(13)60388-5CrossRefGoogle Scholar
  10. 10.
    McGuire, C.M. and Peters, D.G., Electrochim. Acta, 2014, vol. 137, p. 423. doi 10.1016/j.electacta.2014.05.127CrossRefGoogle Scholar
  11. 11.
    Bylaska, E.J., Dixon, D.A., Felmy, A.R., Aprà, E., Windus, T.L., Guo, Zh.C., and Tratnyek, P.G., J. Phys. Chem. A, 2004, vol. 108, no. 27, p. 5883. doi 10.1021/jp0312316CrossRefGoogle Scholar
  12. 12.
    Muñoz-Pérez, M., Rodríguez, A., Mozo, J.D., and Moyá M.L., Langmuir, 1998, vol. 14, p. 3524. doi 10.1021/la971222mCrossRefGoogle Scholar
  13. 13.
    Kazin, V.N., Sibrikov, S.G., Kopeikin, V.V., Mironov, G.S., Rusanov, A.L., and Kazakova, G.V., USSR Inventor’s Certificate no. 1 606 507, 1990; Byull. Izobret., 1990, no.42.Google Scholar
  14. 14.
    Kazin, V.N., Sibrikov, S.G., Kopeikin, V.V., and Mironov, G.S., Zh. Org. Khim., 1991, vol. 27, no. 2, p.380.Google Scholar
  15. 15.
    Sibrikov, S.G., Kazin, V.N., and Kopeikin, V.V., Zh. Org. Khim., 1994, vol. 30, no. 7, p. 1080.Google Scholar
  16. 16.
    Sibrikov, S.G., Kazin, V.N., Kopeikin, V.V., and Orlova, T.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1995. vol. 38, no. 6, p.32.Google Scholar
  17. 17.
    Sibrikov, S.G., Sapozhnikova, N.G., Savinskii, N.G., Mironov, G.S., and Kazin, V.N., Khim. Tekhnol., 2003, no. 6, p.13.Google Scholar
  18. 18.
    Kazin, V.N., Savinskii, N.G., Sibrikov, S.G., Sapozhnikova, N.G., and Yablonskii, O.P., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol, 2004, vol. 47, no. 6, p.28.Google Scholar
  19. 19.
    Kazin, V.N., Sibrikov, S.G., Podaruev, S.O., Sapozhnikova, N.G., and Plakhtinskii, V.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2009, vol. 52, no. 8, p.16.Google Scholar
  20. 20.
    Kazin, V.N., Kuzhin, M.B., Sirik, A.V., and Guzov, E.A., Russ. J. Org. Chem., 2016, vol. 52, no. 9, p 1277. doi 10.1134/S1070428016090049CrossRefGoogle Scholar
  21. 21.
    Kazin, V.N., Kuzhin, M.B., Sibrikov, S.G., Sirik, A.V., Guzov, E.A., and Plakhtinskii, V.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 381. doi 10.1134/S1070363217030033CrossRefGoogle Scholar
  22. 22.
    Granovsky, A.A., Firefly 8.2. www http://classic.chem.msu.su/gran/firefly/index.html
  23. 23.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  24. 24.
    Miehlich, B., Savin, A., Stoll, H., and Preuss, H., Chem. Phys. Lett., 1989, vol. 157, no. 3, p. 200. doi 10.1016/0009-2614(89)87234-3CrossRefGoogle Scholar
  25. 25.
    Gonzales, C. and Schlegel, H.B., J. Chem. Phys., 1989, vol. 90, p. 2154. doi 10.1063/1.456010CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations