Russian Journal of General Chemistry

, Volume 88, Issue 6, pp 1306–1317 | Cite as

Heterometallic Carboxylate Complexes as Precursors for Mixed Oxides: III. 3d–4f Carboxylates

  • P. S. Koroteev
  • Zh. V. Dobrokhotova
  • V. M. Novotortsev


The current status of research into the thermal behavior of heterometallic 3d–4f carboxylates that are suitable candidates for single-source precursors of mixed oxides was considered. Emphasis was placed on the thermal stability and conditions of conversion of complexes to mixed oxides. The influence of the composition and nature of the precursor on the composition and properties of the resulting mixed oxides was demonstrated.


heterometallic 3d–4f carboxylates thermolysis mixed oxides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koroteev, P.S., Dobrokhotova, Zh.V., Grechnikov, F.V., and Novotortsev, V.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1290. doi 10.1134/S1070363218060403CrossRefGoogle Scholar
  2. 2.
    Pilipenko, A.T. and Tananaiko, M.M., Raznoligandnye and raznometall’nye kompleksy i ikh primenenie v analiticheskoi khimii (Mixed-Ligand Complexes and Their Application in Analytical Chemistry), Moscow: Khimiya, 1983, p.168.Google Scholar
  3. 3.
    Shabanova, I.V., Frolov, V.Yu., Storozhenko, T.P., and Zelenov, V.I., Russ. J. Coord. Chem., 2005, vol. 31, p. 375. doi doi 10.1007/s11173-005-0107-1CrossRefGoogle Scholar
  4. 4.
    Shabanova, I.V., Panyushkin, V.T., Frolov, V.Yu., Zelenov, V.I., and Storozhenko, T.P., Russ. J. Electrochem., 2004, vol. 40, p. 474. 10.1023/B:RUEL.0000023945.92755.3dCrossRefGoogle Scholar
  5. 5.
    Wang, S., Pang, Z., Smith, K.D.L., and Wagner, M.J., J. Chem. Soc., Dalton Trans., 1994, p. 955. doi 10.1039/DT9940000955Google Scholar
  6. 6.
    Denisova, L.T., Chumilina, L.G., and Denisov, V.M., Phys. Solid State, 2014, vol. 56, p. 1928. doi 10.1134/S106378341409008XCrossRefGoogle Scholar
  7. 7.
    Voronin, G.F., Pure Appl. Chem., 1992, vol. 64, p.27.CrossRefGoogle Scholar
  8. 8.
    Carp, O., Patron, L., and Segal, E., Rev. Roum. Chim., 2006, vol. 51, p.5.Google Scholar
  9. 9.
    Deb, N., J. Therm. Anal. Calorim., 2002, vol. 67, p. 699. doi 10.1023/A:1014321309138CrossRefGoogle Scholar
  10. 10.
    Deb, N., J. Therm. Anal. Calorim., 2012, vol. 107, p. 561. doi 10.1007/s10973-011-1551-4CrossRefGoogle Scholar
  11. 11.
    Deb, N., J. Therm. Anal. Calorim., 2013, vol. 111, p. 491. doi 10.1007/s10973-012-2437-9CrossRefGoogle Scholar
  12. 12.
    Malghe, Y.S., Gurjar, A.V., and Dharwadkar, S.R., J. Therm. Anal. Calorim., 2008, vol. 91, p. 915. doi 10.1007/s10973-007-8619-1CrossRefGoogle Scholar
  13. 13.
    Bykov, M.A., Emelina, A.L., Orlova, E.V., Kiskin, M.A., Aleksandrov, G.G., Dobrokhotova, Z.V., Novotortsev, V.M., Eremenko, I.L., and Bogomyakov, A.S., Russ. J. Inorg. Chem., 2009, vol. 54, p. 548. doi 10.1134/S003602360904010XCrossRefGoogle Scholar
  14. 14.
    Orlova, E.V., Goldberg, A.E., Kiskin, M.A., Koroteev, P.S., Aleksandrov, G.G., Dobrokhotova, Zh.V., Novotortsev, V.M., Eremenko, I.L., Emelina, A.L., and Bykov, M.A., Russ. Chem. Bull., Int. Ed., 2011, vol. 60, p. 2236. doi 10.1007/s11172-011-0343-0CrossRefGoogle Scholar
  15. 15.
    Sidorov, A.A., Fomina, I.G., Talismanov, S.S., Aleksandrov, G.G., Novotortsev, V.M., Nefedov, S.E., and Eremenko, I.L., Russ. J. Coord. Chem., 2001, vol. 27, p. 548. doi 10.1023/A:1011349727749CrossRefGoogle Scholar
  16. 16.
    Aono, H., Kondo, N., Sakamoto, M., Traversa, E., and Sadaoka, Y., J. Eur. Ceram. Soc., 2003, vol. 23, p. 1375. doi 10.1016/S0955-2219(02)00350-3CrossRefGoogle Scholar
  17. 17.
    Kharchenko, A.V., Makarevich, A.M., Grigor’ev, A.N., Sorokina, N.M., Lysenko, K.A., and Kuz’mina, N.P., Dokl. Chem., 2009, vol. 426, p. 124. doi 10.1134/S0012500809060032CrossRefGoogle Scholar
  18. 18.
    Mahata, P., Sankar, G., Madras G., and Natarajan, S., Chem. Commun., 2005, no. 41, p. 5787. doi 10.1039/B509588CCrossRefGoogle Scholar
  19. 19.
    Mahata, P., Aarthi, T., Madras, G., and Natarajan, S., J. Phys. Chem. C, 2007, vol. 111, p. 1665. doi 10.1021/jp066302qCrossRefGoogle Scholar
  20. 20.
    Patron, L., Carp, O., Mandru, I., and Grasa, G., J. Therm. Anal. Calor., 1999, vol. 56, p. 597. doi 10.1023/A:1010169131099CrossRefGoogle Scholar
  21. 21.
    Carp, O., Patron, L., Ianculescu, A., Crisan, D., Dragan, N., and Olar, R., J. Therm. Anal. Calor., 2003, vol. 72, p. 253. doi 10.1023/A:1023992308398CrossRefGoogle Scholar
  22. 22.
    Carp, O., Patron, L., Ianculescu, A., Pasuk, J., and Olar, R., J. Alloys Compd., 2003, vol. 351, p. 314. doi 10.1016/S0925-8388(02)01079-4CrossRefGoogle Scholar
  23. 23.
    Patron, L., Budrugeac, P., Balu, A., Carp, O., Diamandescu, L., and Feder, M., J. Therm. Anal. Calor., 2007, vol. 88, p. 273. doi 10.1007/s10973-006-8080-6CrossRefGoogle Scholar
  24. 24.
    Patron, L., Carp, O., Mandru, I., Marinescu, G., Hanss, J., and Reller, A., J. Therm. Anal. Calor., 2008, vol. 92, p.307.CrossRefGoogle Scholar
  25. 25.
    Li, L., Li, J., Hou, H., Fan, Y., and Zhu, Y., Inorg. Chim. Acta, 2006, vol. 359, p. 3139. doi 10.1016/j.ica.2006.03.002CrossRefGoogle Scholar
  26. 26.
    Koroteev, P.S., Dobrokhotova, Zh.V., Efimov, N.N., Ilyukhin, A.B., and Novotortsev, V.M., Russ. J. Coord. Chem., 2014, vol. 40, p. 495. doi 10.1134/S1070328414070045CrossRefGoogle Scholar
  27. 27.
    Dobrokhotova, Zh.V., Koroteev, P.S., Novotortsev, V.M., Egorov, M.P., and Nefedov, O.M., Russ. J. Inorg. Chem., 2007, vol. 52, p. 1109. doi 10.1134/S0036023607070200CrossRefGoogle Scholar
  28. 28.
    Koroteev, P.S., Kiskin, M.A., Dobrokhotova, Zh.V., Bogomyakov, A.S., Efimov, N.N., and Novotortsev, V.M., Polyhedron, 2011, vol. 30, p. 2523. doi 10.1016/j.poly.2011.06.035CrossRefGoogle Scholar
  29. 29.
    Koroteev, P.S., Dobrokhotova, Zh.V., Ilyukhin, A.B., Birin, K.P., Motornova, M.S., and Novotortsev, V.M., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, p. 1069. doi 10.1007/s11172-012-0145-zCrossRefGoogle Scholar
  30. 30.
    Koroteev, P.S., Dobrokhotova, Zh.V., Kiskin, M.A., Lermontov, A.S, Bogomyakov, A.S., Tyurin, A.V., Bykov, M.A., Demina, L.I., Velikodny, Yu.A., Kozyukhin, S.A., and Novotortsev, V.M., Polyhedron, 2012, vol. 43, p. 36. doi 10.1016/j.poly.2012.05.030CrossRefGoogle Scholar
  31. 31.
    Koroteev, P.S., Dobrokhotova, Zh.V., Ilyukhin, A.B., Efimov, N.N., Kirdyankin, D.I., Tyurin, A.V., Velikodny, Yu.A., Kovba, M.L., and Novotortsev V.M., Polyhedron, 2013, vol. 65, p. 110. doi 10.1016/j.poly.2013.08.024CrossRefGoogle Scholar
  32. 32.
    Koroteev, P.S., Dobrokhotova, Zh.V., Ilyukhin, A.B., Efimov, N.N., Kirdyankin, D.I., Tyurin, A.V., and Novotortsev, V.M., Polyhedron, 2015, vol. 85, p. 941. doi 10.1016/j.poly.2014.09.040CrossRefGoogle Scholar
  33. 33.
    Gavrikov, A.V., Koroteev, P.S., Dobrokhotova, Zh.V., Ilyukhin, A.B., Efimov, N.N., Kirdyankin, D.I., Bykov, M.A., Ryumin, M.A., and Novotortsev, V.M., Polyhedron, 2015, vol. 102, p. 48. doi 10.1016/j.poly.2015.07.063CrossRefGoogle Scholar
  34. 34.
    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Nature, 2003, vol. 426, p. 55. doi 10.1038/nature02018CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. S. Koroteev
    • 1
  • Zh. V. Dobrokhotova
    • 1
  • V. M. Novotortsev
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations