Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 6, pp 1142–1147 | Cite as

Molecular Complexes of μ-Carbidodimeric Iron(IV) Tetra-4-tert-butylphthalocyaninate with Nitrogenous Bases

  • S. V. Zaitseva
  • S. A. Zdanovich
  • D. V. Tyurin
  • O. I. Koifman
Article
  • 11 Downloads

Abstract

The reaction of μ-carbidodimeric iron(IV) tetra-4-tert-butylphthalocyaninate with nitrogenous bases (imidazole and its derivatives, pyridine, diethylamine), which involves formation of donor‒acceptor complexes with a preserved dimeric structure, was studied by spectral methods. The composition of such molecular complexes and their comparative stability were determined. The coordination power of μ- carbidodimeric iron(IV) tetra-4-tert-butylphthalocyaninate was found to depend on the nature of the nitrogenous base and macrocycle. Quantum-chemical modeling of the coordination reaction was performed. The energetic and geometric characteristics of the donor‒acceptor complexes were obtained. The composition of the reaction products was shown to be affected of the degree of deformation of the macrocycle.

Keywords

phthalocyanine dimer iron donor‒acceptor complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oszajca, M., Franke, A., Brindell, M., Stochel, G., and van Eldik, R., Coord. Chem. Rev., 2016, vol. 306, no. 2, p. 483. doi 10.1016/j.ccr.2015.01.013CrossRefGoogle Scholar
  2. 2.
    Sengupta, K., Chatterjee S., and Dey, A., ACS Catal., 2016, vol. 6, no. 3, p. 1382. doi 10.1021/acscatal.5b02668CrossRefGoogle Scholar
  3. 3.
    Ji, L., Franke, A., Brindell, M., Oszajca, M., Zahl, A., and van Eldik, R., Chem. Eur. J., 2014, vol. 20, no. 44, p. 14437. doi 10.1002/chem.201402347CrossRefGoogle Scholar
  4. 4.
    Chapman, C.M., Pruneau, J.M., Laverack, C.A., Dutton, A.S., and Jones, G.B., App. Catal. A, 2016, vol. 510, p. 204. doi 10.1016/j.apcata.2015.11.031CrossRefGoogle Scholar
  5. 5.
    Buoro, R.M., Bacil, R.P., Sanz, C.G., Campos, O.S., and Serrano, S.H.P., Sens Actuators B: Chem., 2017, vol. 250, p. 169. doi 10.1016/j.snb.2017.03.176CrossRefGoogle Scholar
  6. 6.
    Kuz’min, S.M., Chulovskaya, S.A., Tesakova, M.V., Semeikin, A.S., and Parfenyuk, V.I., Macroheterocycles, 2014, vol. 7, no. 3, p. 218. doi 10.6060/mhc140511kCrossRefGoogle Scholar
  7. 7.
    Magerusan, L., Socaci, C., Pogacean, F., Rosu, M.-C., Biris, A. R., Coros, M., Turza, A., Floare-Avram, V., Katona, G., and Pruneanu, S., RSC Adv., 2016, vol. 6, no. 83, p. 79497. doi 10.1039/c6ra15414jCrossRefGoogle Scholar
  8. 8.
    Sono, M., Roach, M.P., Coulter, E.D., and Dawson, J.H., Chem. Rev., 1996, vol. 96, no. 7, p. 2841. doi 10.1021/cr9500500CrossRefGoogle Scholar
  9. 9.
    Poulos, T.L., Chem. Rev., 2014, vol. 114, no. 7, p. 3919. doi 10.1021/cr400415kCrossRefGoogle Scholar
  10. 10.
    Sorokin, A.B., Chem. Rev., 2013, vol. 113, no. 10, p. 8152. doi 10.1021/cr4000072CrossRefGoogle Scholar
  11. 11.
    Afanasiev, P., Kudrik, E.V., Sorokin, A.B., Koifman, O.I., Albrieux, F., and Briois, V., Chem. Commun., 2012, vol. 48, no. 49, p. 6088. doi 10.1039/C2CC31917ACrossRefGoogle Scholar
  12. 12.
    Alvarez, L.X. and Sorokin, A.B., J. Organomet. Chem., 2015, vol. 793, p. 139. doi 10.1016/j.jorganchem.2015.02.045CrossRefGoogle Scholar
  13. 13.
    Dereven’kov, I.A., Ivanova, S.S., Kudrik, E.V., Makarov, S.V., Makarova, A.S., and Stuzhin, P.A., J. Serb. Chem. Soc., 2013, vol. 78, no. 10, p. 1513. doi 10.2298/JSC130119019DCrossRefGoogle Scholar
  14. 14.
    Yusubov, M.S., Celik, C., Geraskina, M.R., Yoshimura, A., Zhdankin, V.V., and Nemykin, V.N., Tetrahedron Lett., 2014, vol. 55, no. 41, p. 5687. doi 10.1016/j.tetlet.2014.08.070CrossRefGoogle Scholar
  15. 15.
    Ercolani, C., Jubb, J., Pennesi, G., Russo, U., and Trigiante, G., Inorg. Chem., 1995, vol. 34, no. 10, p. 2535. doi 10.1021/ic00114a010CrossRefGoogle Scholar
  16. 16.
    Ren, Q.-Z., Yao, Y., Ding, X.-J., Hou, Z.-S., and Yan, D.-Y., Chem. Commun., 2009, vol. 45, no. 31, p. 4732. doi 10.1039/B904199KCrossRefGoogle Scholar
  17. 17.
    Silaghi-Dumitrescu, R., Makarov, S.V., Uta, M.M., Dereven’kov, I.A., and Stuzhin, P.A., New J. Chem., 2011, vol. 35, no. 5, p. 1140. doi 10.1039/C0NJ00827CCrossRefGoogle Scholar
  18. 18.
    Harischandra, D.N., Lowery, G., Zhang, R., and Newcomb, M., Org. Lett., 2009, vol. 11, no. 10, p. 2089. doi 10.1021/ol900480pCrossRefGoogle Scholar
  19. 19.
    Neu, H.M., Yusupov, M.S., Zhdankin, V.V., and Nemykin, V.N., Adv. Synth. Catal., 2009, vol. 351, no. 18, p. 3168. doi 10.1002/adsc.200900705CrossRefGoogle Scholar
  20. 20.
    Saka, E.T., Cakir, D., Biyikliogli, Z., and Kantekin, H., Dyes Pigments, 2013, vol. 98, no. 2, p. 255. doi 10.1016/j.dyepig.2013.02.021CrossRefGoogle Scholar
  21. 21.
    Sorokin, A.B. and Tuel, A., Catal. Today, 2000, vol. 57, nos. 1–2, p. 45. doi 10.1016/S0920-5861(99)00312-0CrossRefGoogle Scholar
  22. 22.
    Ghosh, A., Tangen, E., Gonzalez, E., and Que, L., Angew. Chem. Int. Ed., 2004, vol. 43, no. 743, p. 834. doi 10.1002/anie.200351768CrossRefGoogle Scholar
  23. 23.
    Khatami, M.H., Bromberek, M., Saika-Voivod, I., Booth, V., BBA Biomembranes, 2014, vol. 1838, no. 11, p. 2778. doi 10.1016/j.bbamem.2014.07.013CrossRefGoogle Scholar
  24. 24.
    Blindauer, C.A., J. Inorg. Biochem., 2008, vol. 102, no. 3, p. 507. doi 10.1016/j.jinorgbio.2007.10.032CrossRefGoogle Scholar
  25. 25.
    Zaitseva, S.V., Zdanovich, S.A., Kudrik, E.V., and Koifman, O.I., Russ. J. Inorg. Chem., 2017, vol. 62, p. 1257. doi 10.1134/S0036023617090194CrossRefGoogle Scholar
  26. 26.
    Zaitseva, S.V., Zdanovich S.A., Tyulyaeva, E.Y., Grishina, E.S., and Koifman, O.I., J. Porphyrins Phthalocyanines, 2016, vol. 20, no. 5, p. 639. doi 10.1142/S1088424616500474CrossRefGoogle Scholar
  27. 27.
    Bulatov, M.I. and Kalinkin, I.P., Prakticheskoe rukovodstvo po fotokolometricheskim i spektrofotometricheskim metodam analiza (Manual on Photocolorimetry and Spectrophotometry), Leningrad: Khimiya, 1968.Google Scholar
  28. 28.
    Berezin, B. D. and Koifman, O.I., Russ. Chem. Rev., 1980, vol. 49, no. 12, p. 1188. doi 10.1070/RC1980v049n12ABEH002537CrossRefGoogle Scholar
  29. 29.
    Geraskin, I.M., Luedtke, M.W., Neu, H.M., Nemykin, V.N., and Zhdankin, V.V., Tetrahedron Lett., 2008, vol. 49, no. 52, p. 7410. doi 10.1016/j.tetlet.2008.10.060CrossRefGoogle Scholar
  30. 30.
    Schidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomeri, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347. doi 10.1002/jcc.540141112CrossRefGoogle Scholar
  31. 31.
    Stewart, J.J.P., J. Comp.-Aided Mol. Des., 1990, vol. 4, no. 1, p. 1. doi 10.1007/BF00128336CrossRefGoogle Scholar
  32. 32.
    Fletcher, R., Methods of Optimization, New York: Wiley, 1980, p.45.Google Scholar
  33. 33.
    Zaitseva, S.V., Zdanovich, S.A., and Koifman, O.I., Russ. J. Coord. Chem., 2006, vol. 32, no. 7, p. 481. doi 10.1134/S1070328406070049CrossRefGoogle Scholar
  34. 34.
    Colomban, C., Kudrik, E.V., Tyurin, D.V., Albrieux, F., Nefedov, S.E., Afanasiev, P., and Sorokin, A.B., Dalton Trans., 2015, vol. 44, no. 5, p. 2240. doi 10.1039/C4DT03207ACrossRefGoogle Scholar
  35. 35.
    Kienast, A., Galich, L., Murray, K.S., Moubaraki, B., Lazarev, G., Cashion, J.D., and Homborg, H., J. Porphyrins Phthalocyanines, 1997, vol. 1, p. 141. doi 1088-4246/97/020141-17CrossRefGoogle Scholar
  36. 36.
    Rossi, G., Goedken, V.L., and Ercolani, C., J. Chem. Soc. Chem. Commun., 1988, no. 1, p. 46. doi 10.1039/C39880000046CrossRefGoogle Scholar
  37. 37.
    Bersuker, I.B., Elektronnoe stroenie i svoistva koordinatsionnykh soedinenii (Electronic Structure of Coordination Compounds), Leningrad: Khimiya, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Zaitseva
    • 1
  • S. A. Zdanovich
    • 1
  • D. V. Tyurin
    • 2
  • O. I. Koifman
    • 1
    • 2
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations