Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 520–527 | Cite as

Synthesis and Special Features of Electrochemical Behavior of Tungsten Oxide Deposited on Various Substrates

  • D. V. Zhuzhel’skii
  • K. D. Yalda
  • V. N. Spiridonov
  • R. V. Apraksin
  • V. V. Kondrat’ev
Article
  • 5 Downloads

Abstract

Tungsten oxides were electrochemically deposited from a metastable acidic solution of isopolytungstate on simple glassy carbon electrodes and glassy carbon electrodes coated with a film of a conductive polymer poly(3,4-ethylenedioxythiophene). It was found by the cyclic voltammetry method that the redox capacity of tungsten oxide deposits on the conductive polymer film is noticeably greater than on glassy carbon, which indirectly points to its high dispersion. The morphology of the tungsten oxide deposits was studied using scanning electron microscopy. The tungsten valence state in the composition of surface tungsten oxides was determined by the X-ray electron spectroscopy method.

Keywords

isopolytungstate tungsten oxide conductive polymer poly-3,4-ethylenedioxythiophene electrochemical deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Masahiro, S. and Eberhard, S., Chem. Rev., 1998, vol. 98, p. 219. doi 10.1021/cr9603946CrossRefGoogle Scholar
  2. 2.
    Ammam, M., J. Mater. Chem. (A), 2013, vol. 1, p. 6291. doi 10.1039/C3TA01663CCrossRefGoogle Scholar
  3. 3.
    Keita, B., Nadjo, L., and Haeussler, J.P., Electroanal. Chem., 1988, vol. 243, p. 481. doi 10.1016/0022-0728 (88)80051-2CrossRefGoogle Scholar
  4. 4.
    Tsze, V., Borzenko, M.I., Tsyirlina, G.A., and Petrii, O.A., Elektrokhim., 2002, vol. 38, no. 11, p. 1250.Google Scholar
  5. 5.
    Granqvist, C.G., Sol. Energy Mater. Sol. Cells, 2000, vol. 60, p. 201. doi 10.1016/S0927-0248(99)00088-4CrossRefGoogle Scholar
  6. 6.
    Monk, P.M.S., Mortimer, R.J., and Rosseinsky, D.R., Electrochromism: Fundamentals and Applications, Weinheim: Wiley-VCH Verlag GmbH, 2007, p. 80.Google Scholar
  7. 7.
    Jensen, J., Hosel, M., Dyer, A.L., and Krebs, F.C., Adv. Funct. Mater., 2015, vol. 25, p. 2073. doi/adfm.201403765CrossRefGoogle Scholar
  8. 8.
    Matsui, J., Kikuchi, R., and Miyashita, T., J. Am. Chem. Soc., 2014, vol. 136, p. 842. doi 10.1021/ja4107786CrossRefGoogle Scholar
  9. 9.
    Thakur, V.K., Ding, G., Ma, J., Lee, P.S., and Lu, X., Adv. Mater., 2012, vol. 24, p. 4071. doi adma.201200213CrossRefGoogle Scholar
  10. 10.
    Granqvist, C.G., Sol. Energy Mater. Sol. Cells, 2012, vol. 99, p. 1. doi 10.1016/j.solmat.2011.08.021.KCrossRefGoogle Scholar
  11. 11.
    Kumagai, N., Kumagai, N., and Tanno, K., Electrochim. Acta, 1987, vol. 32, p. 1521. doi 10.1016/0013-4686(87) 85096-XCrossRefGoogle Scholar
  12. 12.
    Kumagai, N., Matsuura, Y., Kumagai, N., and Tanno, K., J. Electrochem. Soc., 1992, vol. 139, p. 3553. doi 10.1149/1.2069120CrossRefGoogle Scholar
  13. 13.
    Kumagai, N. and Yashiro, H., Solid State Ionics, 1997, vol. 98, p. 159. doi 10.1016/S0167-2738(97)00114-8CrossRefGoogle Scholar
  14. 14.
    Wang, Y.-H., Wang, C.-C., Cheng, W.-Y., and Lu, S.-Y., Carbon, 2014, vol. 69, p. 287. doi 10.1016/j.carbon.2013.12.027CrossRefGoogle Scholar
  15. 15.
    Gao, l., Wang, X., Xie, Z, Song, W., Wang, L., Wu, X., Qu, F., Chen, D., and Shen, G., J. Mater. Chem. (A), 2013, vol. 1, no. 24, p. 7167. doi 10.1039/C3TA10831GCrossRefGoogle Scholar
  16. 16.
    Dautremont-Smith, W.C., Green, M, and Kang, K.S., Electrochim. Acta, 1977, vol. 22, p. 751. doi 10.1016/0013-4686(77)80031-5CrossRefGoogle Scholar
  17. 17.
    Reichman, B. and Bard, A.J., J. Electrochem. Soc., 1979, vol. 126, p. 583. doi 10.1149/1.2129091CrossRefGoogle Scholar
  18. 18.
    Davazoglou, D., Leveque, G., and Donnadieu, A., Solar Energy Mater., 1988, vol. 17, p. 379. doi 10.1016/0165-1633(88)90020-2CrossRefGoogle Scholar
  19. 19.
    Gesheva, K., Szekeres, A., and Ivanova, T., Sol. Energy Mater. Sol. Cells, 2003, vol. 76, p. 563. doi 10.1016/S0927-0248(02)00267-2CrossRefGoogle Scholar
  20. 20.
    Yu, Zh., Jia, X., Du, J., and Zhang, J., Sol. Energy Mater. Sol. Cells, 2000, vol. 64, p. 55. doi 10.1016/S0927-0248(0000)00043-XCrossRefGoogle Scholar
  21. 21.
    Yamanaka, K., Japan J. Appl. Phys., 1981, vol. 20, p. L307. doi 10.1143/JJAP.20.L307Google Scholar
  22. 22.
    Lvovich, V. and Scheeline, A., Computer. Chem., 1997, vol. 69, p. 454. doi 10.1021/ac9606261Google Scholar
  23. 23.
    Tiwari, A. and Gong, S.Q., Electroanalysis, 2008, vol. 20, p. 1775. doi elan.200804237CrossRefGoogle Scholar
  24. 24.
    Qu, H., Zhang, X., Zhang, H., Tian, Y., Lia, N., Li, H., Hou, S., Li, X., Zhao, J., and Li, Y. Sol. Energy Mater. Sol. Cells, 2017, vol. 163, p. 23. doi 10.1016/j.solmat.2016.12.030CrossRefGoogle Scholar
  25. 25.
    Granqvist, C.G., Handbook of Inorganic Electrochromic Materials, Amsterdam: Elsevier, 1995. p. 87.Google Scholar
  26. 26.
    Timofeeva, E.V., Tsirlina, G.A., and Petrii, O.A., Russ. J. Electrochem., 2003, vol. 39, no. 7, p. 716. doi 10.1023/A:1024869801164CrossRefGoogle Scholar
  27. 27.
    Pop, M.S., Geteropoli-i Izopolioksometallaty (Heteropoly-and Isopolyoxometalates), Novosibirsk: Nauka, 1990, p. 139.Google Scholar
  28. 28.
    Kabanov, V. and Spitsyn, V.I., Zh. Obshch. Khim., 1964, vol. 9, p. 1844.Google Scholar
  29. 29.
    Kazanskii, L.P., Fedotov, M.A., and Spitsyn V.i., Dokl. Akad. Nauk SSSR, 1977, vol. 234, p. 1376.Google Scholar
  30. 30.
    Cruywagen, J.J., Adv. Inorg. Chem., 2000, vol. 49, p. 127. doi 10.1016/S0898-8838(08)60270-6CrossRefGoogle Scholar
  31. 31.
    Tytko, K.H. and Glemser, O., Adv. Inorg. Chem. Radiochem., 1976, vol. 19, p. 239. doi 10.1016/S0065-2792(08)60073-4CrossRefGoogle Scholar
  32. 32.
    Hastings, J.J. and Howarth, W., J. Chem. Soc. Dalton Trans., 1992, p. 209. doi 10.1039/DT9920000209Google Scholar
  33. 33.
    Himeno, S. and Kitazumi, I., Inorg. Chim. Acta, 2003, vol. 355, p. 81. doi 10.1016/S0020-1693(03)00313-XCrossRefGoogle Scholar
  34. 34.
    Redkin, A.F. and Bondarenko, G.V., J. Solution. Chem., 2010, vol. 39, p. 1549. doi 10.1007/s10953-010-9595-9CrossRefGoogle Scholar
  35. 35.
    Picquart, M., Castro-Garcia, S., Livage, J., Julien, C., and Haro-Poniatowski, E., J. Sol-Gel Sci. Tech., 2000, vol. 18, p.,199. doi 10.1023/A: 1008775318802Google Scholar
  36. 36.
    Pugolovkin, L.V., Vassil’ev, S.Yu., Borzenko, M.I., Laurinavichyute, V.K., and Tsirlina, G.A., Russ. Chem. Bull., 2013, vol. 62, no. 6, p. 1317. doi 10.1007/s11172-013-0185-zCrossRefGoogle Scholar
  37. 37.
    Tourillon, G., Polythiophene and Its Derivatives. Handbook of Conducting Polymers, New York: Marcel Dekker, 1986, p. 293.Google Scholar
  38. 38.
    Kondratiev, V.V., Pogulaichenko, N.A., Tolstopjatova, E.G., and Malev, V.V., J. Solid State Electrochem., 2011 vol. 15, nos. 11–12, p. 2383. doi 10.1007/s10008-011-1494-5CrossRefGoogle Scholar
  39. 39.
    Plyasova, L.M., Molina, I.Y., Kustova, G.N., Rudina, N.A., Borzenko, M.I., Tsirlina, G.A., and Petrii, O.A., J. Solid State Electrochem., 2005, vol. 9, p. 371. doi 10.1007/s10008-004-0642-6CrossRefGoogle Scholar
  40. 40.
    Tolstopjatova, E.G., Eliseeva, S.N., Poguljaichenko, N.A., and Kondrat’ev, V.V., Vestn. SPb. Gos. Univ., Ser. 4, 2007, vol. 3, p. 100.Google Scholar
  41. 41.
    Aoki K., Mukoyama, I., and Chen, J., Russ. J. Electrochem., 2004, vol. 40, no. 3, p. 280. doi 10.1023/B:RUEL.0000019665.59805.4cCrossRefGoogle Scholar
  42. 42.
    Mukoyama, I., Aoki, K., and Chen, J., J. Electroanal. Chem., 2002, vol. 531, p. 133. doi 10.1016/S0022-0728 (02)01063-XCrossRefGoogle Scholar
  43. 43.
    Alpatov, N.M., and Ovsyannikova, E.V., Ross. Khim. Zh., 2005, vol. 49. p. 93.Google Scholar
  44. 44.
    Bobacka, J, Ivaska, A., and Grzeszczuk, M., Synth. Meth., 1991, vol. 44, p. 9. doi 10.1016/0379-6779(91) 91853-3CrossRefGoogle Scholar
  45. 45.
    Leftheriotis, G., Papaefthimiou, S., Yianoulis, P., Siokou, A., and Kefalas, D., Appl. Surf. Sci., 2003, vol. 218, p. 276. doi 10.1016/S0169-4332(03)00616–0CrossRefGoogle Scholar
  46. 46.
    McGuire, G.E., Schweitzer G.K., and Carlson, A.T., Inorg. Chem., 1973, vol. 12, p. 2450. doi 10.1021/ic50128a045CrossRefGoogle Scholar
  47. 47.
    Siokou, A., Leftheriotis, G., Papaefthimiou, S., and Yianoulis, P., Surf. Sci., 2001, vols. 482–485, p. 294. doi 10.1016/S0039-6028(01)00714-2CrossRefGoogle Scholar
  48. 48.
    Leftheriotis, G., Papaefthimiou S., Yiannoulis, P., and Siokou, A., Thin Solid Films, 2001, vol. 384, p. 298. doi 10.1016/S0040-6090(0000)01828-9CrossRefGoogle Scholar
  49. 49.
    Clatot, J., Campet, G., Zeinert, A., Labrugere, C., Nistor, M., and Rougier, A., Sol. Energy Mater. Sol. Cells, 2011 vol. 95, p. 2357. doi 10.1016/j.solmat.2011.04.006CrossRefGoogle Scholar
  50. 50.
    Wong, H.Y., Ong, C.W., Kwok, R.W., Wong, K.W., Wong, S.P., and Cheung, W.Y., Thin Solid Films, 2000, vol. 376, p. 131. doi 10.1016/S0040-6090(0000)01204-9CrossRefGoogle Scholar
  51. 51.
    Azimirad, R., Naseri, N., Akhavan, O., and Moshfegh, A.Z., J. Phys. (D), 2007, vol. 40, p. 1134. doi 10.1088/0022-3727/40/4/034Google Scholar
  52. 52.
    Lin, Y.-S., Chiang, Y.-L., and Lai, J.-Y., Solid State Ionics, 2009 vol. 180, p. 99. doi 10.1016/j.ssi.2008.10.009CrossRefGoogle Scholar
  53. 53.
    Bertus, L.M., Faure, C., Danine, A., Labrugere, C., Campet, G., Rougier, A., and Duta, A., Mater. Shem. Physics, 2013, vol. 140, p. 49. doi 10.1016/j.matchemphys.2013.02.047CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. V. Zhuzhel’skii
    • 1
  • K. D. Yalda
    • 1
  • V. N. Spiridonov
    • 1
  • R. V. Apraksin
    • 2
  • V. V. Kondrat’ev
    • 2
  1. 1.Volta” Scientific and Technical FirmSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations