Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 383–388 | Cite as

Reactions of Dichloroethenes with Sulfur in the System Hydrazine Hydrate–KОН

  • Е. P. Levanova
  • V. S. Nikonova
  • V. А. Grabel’nykh
  • N. V. Russavskaya
  • A. I. Albanov
  • I. B. Rozentsveig
  • N. А. Korchevin
Article

Abstract

Vinylidene chloride and 1,2-dichloroethene react with sulfur in the system hydrazine hydrate–KОН with the formation of polyvinylenesulfide oligomer of molecular mass 1750–6120 Da containing also vinylenehydrazine and vinylenechloride links in the Z-configuration, and 1,4-dithiine in the yield up to 46%. In aqueous-hydrazine layer polysulfide anions S n 2– (n = 1–4), mainly S22– were found. The mechanism of formation of oligomers and 1,4-dithiine is suggested, which includes in the first stage dehydrochlorination of dichloroethenes and generation of chloroacetylene.

Keywords

1,1(1,2)-dichloroethens sulfur unsaturated sulfur-containing oligomers 1,4-dithiine hydrazine hydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plate, N.A. and Slivinskii, E.V., Osnovy khimii i tekhnologii monomerov (Fundamentals of Chemistry and Technology of Monomers), Мoscow: Nauka: MAIK “Nauka/Interperiodika,” 2002.Google Scholar
  2. 2.
    Promyshlennye khlororganicheskie produkty. Spravochnik (Industrial Chlororganic Products. Handbook), Oshin, L.A., Ed., Moscow: Khimiya, 1978.Google Scholar
  3. 3.
    Levanova, E.P., Nikonova, V.S., Rozentsveig, I.B., Russavskaya, N.V., Albanov, A.I., and Korchevin, N.A., Russ. J. Org. Chem., 2017, vol. 53, no. 8, p. 1186. doi 10.1134/S107042801708005XCrossRefGoogle Scholar
  4. 4.
    Lown, E.M., Dedio, E.L., Strausz, O.P., and Gunning, N.E., J. Am. Chem. Soc., 1967, vol. 89, no. 5, p. 1056. doi 10.1021/ja00981a003CrossRefGoogle Scholar
  5. 5.
    Tsuchiya, T., Shimizu, T., and Kamigata, N., J. Am. Chem. Soc., 2001, vol. 123, no. 47, p. 11534. doi 10.1021/ja0102742CrossRefGoogle Scholar
  6. 6.
    Sun, D.-Q. and Yang, J.-K., Synthesis, 2011, no. 15, p. 2454. doi 10.1055/s-0030-1260066Google Scholar
  7. 7.
    Deryagina, E.N., Russavskaya, N.V., Papernaya, L.K., Levanova, E.P., Sukhomazova, E.N., and Korchevin, N.A., Russ. Chem. Bull., 2005, vol. 54, no. 11, p. 2473. doi 10.1007/S11172-006-0143-0CrossRefGoogle Scholar
  8. 8.
    Korchevin, N.A., Russavskaya, N.V., Alekminskaya, O.V., and Deryagina, E.N., Russ. J. Gen. Chem., 2002, vol. 72, no. 2, p. 260. doi 1070-3632/02/7202-0240CrossRefGoogle Scholar
  9. 9.
    Ikeda, Y., Nagoya, I., and Ozaki, M., Synthetic Metals, 1987, vol. 21, no. 2, p. 235. doi 10.1016/0379-6779(87) 90092-0CrossRefGoogle Scholar
  10. 10.
    Silverstein, R.M., Webser, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, New York: Wiley, 2005.Google Scholar
  11. 11.
    Kobayashi, K. and Gajurel, C.L., Sulfur Rep., 1986, vol. 7, no. 2, p. 123.CrossRefGoogle Scholar
  12. 12.
    Vashchenko, A.V., Kuznetsova, S.Yu., and Somina, L.A., J. Struct. Chem., 2012, vol. 53, no. 2, p. 247. doi 10.1134/S0022476612020060CrossRefGoogle Scholar
  13. 13.
    Russell, J., Org. Magn. Res., 1972, vol. 4, p. 433.CrossRefGoogle Scholar
  14. 14.
    Comprehensive Organic Chemistry, Barton, D.H.R. and Ollis, W.D., Oxford: Pergamon Press, 1979.Google Scholar
  15. 15.
    Deryagina, E.N., Levanova, E.P., Grabel’nykh, V.A., Sukhomazova, E.N., Russavskaya, N.V., and Korchevin, N.A., Russ. J. Gen. Chem., 2005, vol. 75, no. 2, p. 194. doi 10.1007/s11176-005-0197-yCrossRefGoogle Scholar
  16. 16.
    Khimiya atsetilenovykh soedinenii (The Chemistry of Acetylenic Compounds), Vie, G.G., Ed., Мoscow: Khimiya, 1973.Google Scholar
  17. 17.
    Temkin, O.N., Shestakov, G.K., and Treger, Yu.A., Atsetilen: Khimiya. Mekhanizmy reaktsii. Tekhnologiya (Acetylene: Chemistry. Mechanisms of Reactions. Technology), Мoscow: Khimiya, 1991.Google Scholar
  18. 18.
    Meijer, J., Vermeer, P., Verkruijsse, H.O., and Brandsma, L., Rec. Trav. Chim., 1973, vol. 92, p. 1326.CrossRefGoogle Scholar
  19. 19.
    Deryagina, E.N., Korchevin, N.A., Russavskaya, N.V., and Grabel’nykh, V.A., Russ. Chem. Bull., 1998, vol. 47, no. 9, p. 1827. doi 10.1007/BF02495714CrossRefGoogle Scholar
  20. 20.
    Tur’yan, Ya.I., Okislitel’no-vosstanovitel’nye reaktsii i potentsialy v analiticheskoi khimii (Oxidation-Reduction Reactions and Potentials in Analytical Chemistry), Мoscow: Khimiya, 1989. 248 с.Google Scholar
  21. 21.
    Hauptmann, S., Kluge, Ch.-I.M., Selding, K.-D., and Wilde, H., Angew. Chem., 1965, vol. 77, no. 15, p. 678.CrossRefGoogle Scholar
  22. 22.
    Shagun, L.G., Shagun, V.A., Sarapulova, G.I., Ermolyuk, L.P., and Voronkov, M.G., Russ. J. Org. Chem., 2003, vol. 39, no. 10, p. 1568.Google Scholar
  23. 23.
    Korchevin, N.A., Russavskaya, N.V., Deryagina, E.N., and Trofimov, B.A., Doklady Chem., 1998, vol. 363, no. 2, p. 201.Google Scholar
  24. 24.
    Parham, W.E., Wynberg, H., and Ramp, F.L., J. Am. Chem. Soc., 1953, vol. 75, p. 2065. doi 10.1021/ja01105a013CrossRefGoogle Scholar
  25. 25.
    Levanova, E.P., Nikonova, V.S., Grabel’nykh, V.A., Russavskaya, N.V., Albanov, A.I., Rozentsveig, I.B., and Korchevin, N.A., Russ. J. Org. Chem., 2016, vol. 52, no. 7, p. 1070. doi 10.1134/S1070428016070307CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Е. P. Levanova
    • 1
  • V. S. Nikonova
    • 1
  • V. А. Grabel’nykh
    • 1
  • N. V. Russavskaya
    • 1
  • A. I. Albanov
    • 1
  • I. B. Rozentsveig
    • 1
  • N. А. Korchevin
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations