Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 11, pp 2750–2753 | Cite as

Simulation of metal ion coordination sphere in crystals with fluorite structure

  • S. G. Semenov
  • M. E. Bedrina
  • A. V. Titov
Letters to the Editor
  • 14 Downloads

Abstract

Using quantum-chemical methods, it has been found that the structure of fluorite coincides with the symmetry and coordination number of central calcium atom in the (Oh)-Ca7F14 cluster. The Ca–F and F–F interatomic distances in the cluster are 3–4% shorter than in the crystal. The symmetry of the (Oh)–(ScCa6F14)+ cluster mimicking the cationic defect after the β-decay of 45Ca does not correspond to the energy minimum. The increase in the cation charge from 1.79 to 2.80 a. u. reduces the radius of the first coordination sphere by 0.14 Å. For ytterbium dihalides, the bond lengths Yb–F 2.344, Yb–Cl 2.897 Å and the cation charges 1.81, 1.64 a. u., respectively, have been found.

Keywords

fluorite structure calcium-45 β-decay cationic defect ytterbium difluoride ytterbium dichloride heptamer DFT method MP2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wells, A.F., Structural Inorganic Chemistry, Oxford: Oxford University Press, 1984.Google Scholar
  2. 2.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  3. 3.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. doi 10.1103/PhysRevLett.77.3865; Phys. Rev. Lett., 1997, vol. 78, no. 7, p. 1396. doi 10.1103/PhysRevLett.78.1396CrossRefGoogle Scholar
  4. 4.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158. doi 10.1063/1.478522CrossRefGoogle Scholar
  5. 5.
    Möller, C. and Plesset, M.S., Phys. Rev., 1934, vol. 46, no. 7, p. 618. doi 10.1103/PhysRev.46.618CrossRefGoogle Scholar
  6. 5a.
    Head-Gordon, M., Pople, J.A., and Frisch, M.J., Chem. Phys. Lett., 1988, vol. 153, p. 503. doi 10.1016/0009-2614(88) 85250-3CrossRefGoogle Scholar
  7. 5b.
    Frisch, M.J., Head-Gordon, M., and Pople, J.A., Chem. Phys. Lett., 1990, vol. 166, no. 3, p. 275. doi 10.1016/0009-2614(90)829-DCrossRefGoogle Scholar
  8. 6.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Rev. D.01. Wallingford CT: Gaussian, Inc., 2013.Google Scholar
  9. 7.
    Dunning, T.H., Jr., J. Chem. Phys., 1989, vol. 90, no. 2, p. 1007. doi 10.1063/1.456153CrossRefGoogle Scholar
  10. 7a.
    Kendall, R.A., Dunning, T.H., Jr., and Harrison, R.J., J. Chem. Phys., 1992, vol. 96, no. 9, p. 6796. doi 10.1063/1.462569CrossRefGoogle Scholar
  11. 7b.
    Woon, D.E. and Dunning, T.H., Jr., J. Chem. Phys., 1993, vol. 98, no. 2, p. 1358. doi 10.1063/1.464303.CrossRefGoogle Scholar
  12. 8.
    Cioslowski, J., J. Am. Chem. Soc., 1989, vol. 111, no. 22, p. 8333. doi 10.1021/ja00204a001.CrossRefGoogle Scholar
  13. 9.
    Jahn, H.A. and Teller, E., Proc. Roy. Soc. (A), 1937, vol. 161, no. 905, p. 220. doi 10.1098/rspa.1937.0142CrossRefGoogle Scholar
  14. 10.
    Cao, X. and Dolg, M., J. Chem. Phys., 2001, vol. 115, no. 16, p. 7348. doi 10.1063/1.1406535CrossRefGoogle Scholar
  15. 11.
    Petzel, T. and Greis, O., J. Less-Common Met., 1976, vol. 46, no. 2, p. 197. doi 10.1016/0022-5088(76)90210-1CrossRefGoogle Scholar
  16. 12.
    Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 6, p. 1215. doi 10.1134/S1070363216060013CrossRefGoogle Scholar
  17. 13.
    Semenov, S.G., Bedrina, M.E., and Titov, A.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 11, p. 2515. doi 10.1134/S1070363216110189CrossRefGoogle Scholar
  18. 14.
    Mayer, I., Izbrannye glavy kvantovoi khimii. Dokazatel’stva teorem i vyvod formul (Selected Chapters of Quantum Chemistry. Proofs of Theorems and Derivation of Formulas), Moscow: BINOM. Laboratoriya Znanii, 2006.Google Scholar
  19. 15.
    Semenov, S.G., Bedrina, M.E., Klemeshev, V.A., and Makarova, M.V., Opt. Spectrosc., 2014, vol. 117, no. 4, p. 173. doi 10.1134/S0030400X14100191CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Konstantinov St.Petersburg Institute of Nuclear PhysicsNational Research Center “Kurchatov Institute”Orlova roshcha, GatchinaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations