Russian Journal of General Chemistry

, Volume 87, Issue 11, pp 2507–2515 | Cite as

Formation of nanocrystalline BiFeO3 under hydrothermal conditions

  • O. V. Proskurina
  • M. V. Tomkovich
  • A. K. Bachina
  • V. V. Sokolov
  • D. P. Danilovich
  • V. V. Panchuk
  • V. G. Semenov
  • V. V. Gusarov
Article

Abstract

The formation of bismuth orthoferrite under hydrothermal conditions at temperature 160, 180, or 200°С and pressure 100 MPa in aqueous solution of potassium hydroxide has been studied. The determined composition and structure of polycrystalline phase with sillenite structure have evidenced its formation at the interface of the crystallites of amorphous iron oxide. It has been shown that the formation of polycrystalline round-shaped BiFeO3 particles with size about 20 μm occurs via aggregation of perovskite-type phase crystallites (38–70 nm). Pycnometric density of BiFeO3 and the amorphous phase has been determined, and Mossbauer spectra reflecting the state of iron in the phases coexisting during the formation of BiFeO3 have been analyzed.

Keywords

bismuth ferrite hydrothermal synthesis Mössbauer spectroscopy phase formation mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., and Damjanovic, D., J. Am. Ceram. Soc., 2014, vol. 97, no. 7, p. 1993. doi 10.1111/jace.12982CrossRefGoogle Scholar
  2. 2.
    Lin, Z., Cai, W., Jiang, W., Fu Ch., Li Ch., and Song, Y., Ceram. Intern., 2013, vol. 39, p. 8729. doi 10.1016/j.ceramint.2013.04.058CrossRefGoogle Scholar
  3. 3.
    Selbach, S.M., Tybell, T., Einarsrud, M.A., and Grande, T., Chem. Mat., 2007, vol. 19, p. 6478. doi 10.1016/j.jssc.2010.03.014CrossRefGoogle Scholar
  4. 4.
    Shirokov, V.B. Golovko, Yu.I., and Mukhortov, V.M., Techn. Phys., 2014, vol. 59, no. 1, p. 102. doi 10.1134/S1063784214010174CrossRefGoogle Scholar
  5. 5.
    Dziubaniuka, M., Bujakiewicz-Koronska, R., Suchanicz, J., Wyrwaa, J., and Rekas, M., Sensors and Actuators (B), 2013, vol. 188, p. 957. doi 10.1016/j.snb.2013.08.020CrossRefGoogle Scholar
  6. 6.
    Golić, D.L., Radojković, A., Ćirković, J., Dapčević, A., Pajić, D., Tasić, N., Savić, S.M., Počuča-Nešić, M., Marković, S., Branković, G., Stanojević, Z.M., and Branković, Z., J. Eur. Ceram. Soc., 2016, vol. 36, no. 7, p. 1623. doi 10.1016/j.jeurceramsoc.2016.01.031CrossRefGoogle Scholar
  7. 7.
    Srivastav, S.K., Johari, A., Patel, S.K.S., and Gajbhiye, N.S., J. Magn. Magn. Mater., 2017, vol. 441, p. 503. doi 10.1016/j.jmmm.2017.06.025CrossRefGoogle Scholar
  8. 8.
    Hengky Ch., Moya, X., Mathurc, N.D., and Dunn, S., RSC Adv., 2012, vol. 2, p. 11843. doi 10.1039/c2ra22211fCrossRefGoogle Scholar
  9. 9.
    Du, Y., Cheng, Z.X., Dou, S.X., Attard, D.J., and Wang, X.L., J. Appl. Phys., 2011, vol. 109, p. 073903. doi 10.1063/1.3561377CrossRefGoogle Scholar
  10. 10.
    Ortiz-Quinones, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, p. 10306. doi 10.1021/ic400627cCrossRefGoogle Scholar
  11. 11.
    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70CrossRefGoogle Scholar
  12. 12.
    Liu, T., Xu, Y., and Zhao, J., J. Am. Ceram. Soc., 2010, vol. 93, no. 11, p. 3637. doi 10.1111/j.1551-2916.2010.03945.xCrossRefGoogle Scholar
  13. 13.
    Feroze, A., Idrees, M., Kim, D.-K., Nadeem, M., Siddiqi, S.A., Shaukat, S.F., Atif, M., and Siddique, M., J. Electron. Mater., 2017. doi 10.1007/s11664-017-5463-3Google Scholar
  14. 14.
    Selbach, S.M., Einarsrud, M., Tybell, T., and Grande, T., J. Am. Ceram. Soc., 2007, vol. 90, no. 11, p. 3430. doi 10.1111/j.1551-2916.2007.01937.xCrossRefGoogle Scholar
  15. 15.
    Chen, J., Xing, X., Watson, A., Wang, W., Yu, R., Deng, J., Yan, L., Sun, C., and Chen, X., Chem. Mater., 2006, vol. 19, no. 15, p. 3598. doi 10.1021/cm070790cCrossRefGoogle Scholar
  16. 16.
    Kothai, V. and Rajeev, R., Bull. Mat. Sci., 2012, vol. 35, no. 2, p. 157. doi 10.1007/s12034-012-0266-xCrossRefGoogle Scholar
  17. 17.
    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2256. doi 10.1134/S1070363216100030CrossRefGoogle Scholar
  18. 18.
    Suresh, P. and Srinath, S., J. Alloys Compd., 2015, vol. 649, p. 843. doi 10.1016/j.jallcom.2015.07.152CrossRefGoogle Scholar
  19. 19.
    Sakar, M., Balakumar, S., Saravanan, P., and Jaisankar, S., Mater. Res. Bull., 2013, vol. 48, no. 8, p. 2878. doi 10.1016/j.materresbull.2013.04.008CrossRefGoogle Scholar
  20. 20.
    Wei, J. and Xue, D., Mater. Res. Bull., 2008, vol. 43, p. 3368. doi 10.1016/j.materresbull.2008.02.009CrossRefGoogle Scholar
  21. 21.
    Chaudhuri, A., Mitra, S., Mandal, M., and Mandal, K., J. Alloys Compd., 2010, vol. 491, p. 703. doi 10.1016/j.jallcom.2009. 11.049CrossRefGoogle Scholar
  22. 22.
    Zhang, Q., Sando, D., and Nagarajan, V., J. Mater. Chem. (C), 2016, vol. 4, p. 4092. doi 10.1039/C6TC00243ACrossRefGoogle Scholar
  23. 23.
    Zou, J., Gong, W., Ma, J., Li, L., and Jiang, J., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 1304. doi 10.1166/jnn.2015.9074CrossRefGoogle Scholar
  24. 24.
    Guo, Y., Pu, Y., Cui, Y., Hui, C., Wan, J., and Cui, C., Mater. Lett., 2017, vol. 196, p. 57. doi 10.1016/j.matlet.2017.03.023CrossRefGoogle Scholar
  25. 25.
    Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, p. 849. doi 10.1023/A:1020409702215CrossRefGoogle Scholar
  26. 26.
    Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 6, p. 1031. doi 10.17586/2220-8054-2016-7-6-1031-1049Google Scholar
  27. 27.
    Čebela, M., Janković, B., Hercigonja, R., Lukić, M.J., Dohčević-Mitrović, Z., Milivojević, D., and Matović, B., Proc. Appl. Ceram., 2016, vol. 10, no. 4, p. 201. doi 10.2298/PAC1604201CCrossRefGoogle Scholar
  28. 28.
    Wang, X., Mao, W., Zhang, Q., Wang, Q., Zhu, Y., Zhang, J., Yang, T., Yang, J., Li, X., and Huang, W., J. Alloys Compd., 2016, vol. 677, p. 288. doi 10.1016/j.jallcom.2016.02.246CrossRefGoogle Scholar
  29. 29.
    Niu, F., Gao, T., Zhang, N., Chen, Z., Huang, Q., Qin, L., Sun, X., and Huang, Y., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 9693. doi 10.1166/jnn.2015.10682CrossRefGoogle Scholar
  30. 30.
    Di, L.J., Yang, H., Xian, T., Li, R.S., Feng, Y.C., and Feng, W.J., Ceramics Int., 2014, vol. 40, no. 1, p. 4575. doi 10.1016/j.ceramint., 2013.08.134CrossRefGoogle Scholar
  31. 31.
    Shun, L., Nechache, R., Davalos, I.A.V., Goupil, G., Nikolova, L., Nicklaus, M., Laverdiere, J., Ruediger, A., and Rosei, F., J. Am. Ceram. Soc., 2013, vol. 96, no. 10, p. 3155. doi 10.1111/jace. 12473Google Scholar
  32. 32.
    Chybczynska, K., Blaszyk, M., Hilczer, B., Lucinski, T., Matczak, M., and Andrzejewski, B., Mater. Res. Bull., 2017, vol. 86, p. 178. doi 10.1016/j.materresbull.2016.10.024CrossRefGoogle Scholar
  33. 33.
    Suzuki, K., Tokudome, Y., Tsuda, H., and Takahashi, M., J. Appl. Crystallogr., 2016, vol. 49, no. 1, p. 168. doi 10.1107/S1600576715023845CrossRefGoogle Scholar
  34. 34.
    Xu, X., Xu, Q., Huang, Y., Hu, X., Huang, Y., Wang, G., Hun, X., and Zhuang, N., J. Crystal Growth., 2016, vol. 437, p. 42. doi 10.1016/j.jcrysgro.2015.12.015CrossRefGoogle Scholar
  35. 35.
    Cao, W., Chen, Z., Gao, T., Zhou, D., Leng, X., Niu, F., Zhu, Y., Qin, L., Wang, J., and Huang, Y., Mater. Chem. Phys., 2016, vol. 175, p. 1. doi 10.1016/j.matchemphys.2016.02.067CrossRefGoogle Scholar
  36. 36.
    Chen, Z. and Jin, W., J. Mater. Sci., 2014, vol. 25, no. 9, p. 4039. doi 10.1007/s10854-014-2126-5Google Scholar
  37. 37.
    Jartych, E., Oleszak, D., and Mazurek, M., Przeglad Elektrotechniczny (Electrical Review), 2012, no. 9b, p. 242.Google Scholar
  38. 38.
    Jartych, E., Lisinska-Czekaj, A., Oleszak, D., and Czekaj, D., Materials Science-Poland., 2013, vol. 31, no. 2, p. 211. doi 10.2478/s13536-012-0093-1CrossRefGoogle Scholar
  39. 39.
    Flores Morales, S.S., León Flores, J.A., Pérez Mazariego, J.L., Marquina Fábrega, V., and Gómez González, R.W., Physica (B), 2017, vol. 504, p. 109. doi 10.1016/j.physb.2016.10.019CrossRefGoogle Scholar
  40. 40.
    Gusarov, V.V., Egorov, F.K., Ekimov, S.P., and Suvorov, S.A., Zh. Fiz. Khim., 1987, vol. 61, no. 6, p. 1652.Google Scholar
  41. 41.
    Gusarov, V.V., Malkov, A.A., Malygin, A.A., and Suvorov, S.A., Inorg. Mater., 1995, vol. 31, no. 3, p. 320.Google Scholar
  42. 42.
    Ncube, M., Naidoo, D., Bharuth-Ram, K., Billing, D., Masenda, H., Sahu, D.R., Roul, B.K., and Erasmus, R.M., Hyperfine Interact., 2013, vol. 219, p. 83. doi 10.1007/s10751-012-0729-xCrossRefGoogle Scholar
  43. 43.
    Santos, I.A., Grande, H.L.C., Freitas, V.F., de Medeiros, S.N., Paesano Jr, A., Cótica, L.F., and Radovanovic, E., J. Non-Cryst. Solids, 2006, vol. 352, p. 3721. doi 10.1016/j.jnoncrysol.2006.02.122CrossRefGoogle Scholar
  44. 44.
    Vasconcelos, I.F., Pimenta, M.A., and Sombra, A.S.B., J. Mater. Sci., 2001, vol. 36, no. 3, p. 587. doi 10.1023/A:1004804000723CrossRefGoogle Scholar
  45. 45.
    Musić, S., Czakó-Nagy, I., Popović, S., Vértes, A., and Tonković, M., Croat. Chem. Acta, 1986, vol. 59, no. 4, p. 833.Google Scholar
  46. 46.
    Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., and Osiko, V.V., Russ. Chem. Rev., 2014, vol. 83, no. 12, p. 1204. doi 10.1070/RCR4453CrossRefGoogle Scholar
  47. 47.
    Rusakov, V.S. and Kadyrzhanov, K.K., Hyperfine Interact., 2005, vol. 164, p. 87. doi 10.1007/s10751-006-9236-2CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. V. Proskurina
    • 1
    • 2
  • M. V. Tomkovich
    • 1
  • A. K. Bachina
    • 2
  • V. V. Sokolov
    • 1
  • D. P. Danilovich
    • 2
  • V. V. Panchuk
    • 3
  • V. G. Semenov
    • 3
  • V. V. Gusarov
    • 1
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations