Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 8, pp 1834–1842 | Cite as

Metal based sulfanilamides: A note on their synthesis, spectral characterization, and antimicrobial activity

  • S. Rani
  • S. H. Sumrra
  • Z. H. Chohan
Article
  • 49 Downloads

Abstract

Objectives of the current study were synthesis, spectral characterization and biological screening of sulfanilamide derived Schiff bases and their metal based compounds. Sulfanilamide Schiff bases (L 1 L 3 ) were synthesized by condensation of 4-aminobenzenesulfanilamide with 1-(furan-2-yl)ethanone, 1-(thiophene-2-yl)-ethanone, and 1-acetylindoline-2,3-dione. The ligands were used for preparation of their Co(II), Ni(II), Cu(II), and Zn(II) complexes by using metals chlorides in metal: ligand (1: 2) molar ratio. All metal chelates had octahedral geometry with bidentate ligands. The ligands and their metal complexes were characterized by physical, spectral and analytical data, and screened for in-vitro antibacterial activity against six bacterial pathogens (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus, and Bacillus subtilis) and for in vitro antifungal activity against six fungal pathogens (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glabrata). The results of antimicrobial studies revealed that the ligands activity was significantly increased upon chelation.

Keywords

sulfanilamides metal(II) chelates antimicrobial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coombs, R.-R., Ringer, M.-K., Blacquiere, J.-M., Smith, J.-C., Neilsen, J.-S., Uh, Y.-S, Gilbert, J.-B, Leger, L.-J, Zhang, H., and Irving, A.-M., Tran. Met. Chem., 2005, vol. 30, p. 411. doi 10.1007/s11243-004-7625-4CrossRefGoogle Scholar
  2. 2.
    Genc, Y., Ozkanca, R., and Bekdemir, Y., Ann. Clin. Micro. Antimic., 2008, vol. 7, p. 17. doi 10.1186/1476-0711-7-17CrossRefGoogle Scholar
  3. 3.
    Lesch, J.-E., The First Miracle Drugs: How the Sulfa Drugs Transformed Medicine, New York: Oxford University Press, 2007, p. 104.Google Scholar
  4. 4.
    Das, M. and Livingstone, S.-E., Br. J. Cancer, 1978, vol. 37, p. 466. doi 10.1038/bjc.1978.68CrossRefGoogle Scholar
  5. 5.
    Ali, M.-A., Mirza, A.-H., Butcher, R.-J., Tarafder, M.-T.-H., Keat, T.-B., and Ali, A.-M., J.Inorg. Biochem., 2002, vol. 92, p. 141. doi org/10.1016/S0162-0134(02)00559-7CrossRefGoogle Scholar
  6. 6.
    Anandakumaran, J., Sundararajan, M.-L., Jeyakumar, T., and Uddin, M.-N., Am. Chem. Sci. J., 2016, vol. 11, p. 1. doi 10.9734/ACSJ/2016/22807CrossRefGoogle Scholar
  7. 7.
    Scozzafava, A., Owa, T., Mastrolorenzo, A., and Supuran, C.-T., Curr. Med. Chem., 2003, vol. 10, p. 925. doi org/10.2174/0929867033457647CrossRefGoogle Scholar
  8. 8.
    Chohan, Z.-H., Hassan, M.-U., Khan, K.-M., and Supuran, C.-T., J. Enz. Inhib. Med. Chem., 2005, vol. 20, p. 183. doi org/10.1080/14756360500043257CrossRefGoogle Scholar
  9. 9.
    Supuran, C.-T., Casini, A., and Scozzafava, A., Med. Res Rev., 2003, vol. 23, p. 535. doi 10.1002/med.10047CrossRefGoogle Scholar
  10. 10.
    Chohan, Z.-H. and Naseer, M.-M., Appl. Organomet. Chem., 2007, vol. 21, p. 728. doi 10.1002/aoc.1279CrossRefGoogle Scholar
  11. 11.
    Owa, T. and Nagasu, T., Exp. Opin. Ther. Patents., 2000, vol. 10, p. 1725. doi org/10.1517/13543776.10.11.1725CrossRefGoogle Scholar
  12. 12.
    Hassan, M.-U., Chohan, Z.-H., Andrea, S., and Supuran, C.-T., J. Enz. Inhib. Med. Chem., 2004, vol. 19, p. 263. doi org/10.1080/14756360410001689595CrossRefGoogle Scholar
  13. 13.
    Idemudia, O.-G., Sadimenko, A.-P., Afolayan, A.-J., and Hosten, E.-C., Bioinorg. Chem. Appl., 2015, vol. 2015, p. 1. doi org/10.1155/2015/717089CrossRefGoogle Scholar
  14. 14.
    Mishra, A.-P., Mishra, R., Jain, R., and Gupta, S., Mycobiology, 2012, vol. 40, p. 20. doi org/10.5941/MYCO.2012.40.1.020CrossRefGoogle Scholar
  15. 15.
    Rao, R., Reddy, K.-R., and Mahendra, K.-N., Chem. Sci. Trans., 2013, vol. 2, p. 1063. doi 10.7598/cst2013.527Google Scholar
  16. 16.
    Hyatt, J.-L., Moak, T., Hatfield, M.-J., Tsurkan, L., Edwards, C.-C., Wierdl, M., Danks, M.-K., Wadkins, R.-M., and Potter, P.-M., J. Med. Chem., 2007, vol. 50, p. 1876. doi 10.1021/jm061471kCrossRefGoogle Scholar
  17. 17.
    Beauchard, A., Ferandin, Y., Frere, S., Lozach, O., Blairvacq, M., Meijer, L., Thiéry, V., and Besson, T., Bioorg. Med. Chem., 2006, vol. 14, p. 6434. doi org/10.1016/j.bmc.2006.05.036CrossRefGoogle Scholar
  18. 18.
    Prakash, C.-R. and Raja, S., Eur. J. Med. Chem., 2011, vol. 46, p. 6057. doi org/10.1016/j.ejmech.2011.10.020CrossRefGoogle Scholar
  19. 19.
    Bagihalli, G.-B., Badami, P.-S., and Patil, S.-A., J. Enz. Inhib. Med. Chem., 2009, vol. 24, p. 381. doi org/10.1080/14756360802187901CrossRefGoogle Scholar
  20. 20.
    Prashanthi, Y. and Raj, S., J. Sci. Res., 2010, vol. 2, p. 114. doi 10.3329/jsr.v2i1.2732Google Scholar
  21. 21.
    Chohan, Z.-H., Supuran, C.-T., Hadda, T.-B., Nasim, F.-H., and Khan, K.-M., J. Enz. Inhib. Med. Chem., 2009, vol. 24, p. 859. doi 10.1080/14756360802447636CrossRefGoogle Scholar
  22. 22.
    Chohan, Z.-H., J. Enz. Inhib. Med. Chem., 2008, vol. 23, p. 120. doi org/10.1080/14756360701384195CrossRefGoogle Scholar
  23. 23.
    Chohan, Z.-H. and Supuran, C.-T., J.Enz. Inhib. Med. Chem., 2008, vol. 23, p. 240. doi org/10.1080/14756360701474913CrossRefGoogle Scholar
  24. 24.
    Nyquist, R.-A., Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra, Orlando, Academic Press, 2001.Google Scholar
  25. 25.
    Freeman, R.-A., Handbook of Nuclear Magnetic Resonance, Longman Publishing, 2nd ed., 1997.Google Scholar
  26. 26.
    Geary, W.-J., Coord. Chem. Rev., 1971, vol. 7, p. 81. doi org/10.1016/S0010-8545(00)80009-0CrossRefGoogle Scholar
  27. 27.
    Ballhausen, C.-J., An Introduction to Ligand Field Theory, New York: McGraw Hill, 1962.Google Scholar
  28. 28.
    Lever, A.-B.-P., Inorganic Electronic Spectroscopy, New York: Elsevier, 1984.Google Scholar
  29. 29.
    Nair, M.-S. and Joseyphus, R.-S., Spectrochimica. Acta, A, 2008, vol. 70, p. 749. doi org/10.1016/j.saa.2007.09.006CrossRefGoogle Scholar
  30. 30.
    Chohan, Z.-H., Shaikh, A.-U., and Supuran, C.-T., J. Enz. Inhib. Med. Chem., 2006, vol. 21, p. 771. doi 10.1080/14756360600829316CrossRefGoogle Scholar
  31. 31.
    Larabi, L., Hared, Y., Reguig, A., and Mostafa, M., J. Serb. Chem. Soc., 2003, vol. 68, p. 85. doi org/10.2298/JSC0302085LCrossRefGoogle Scholar
  32. 32.
    Badawy, M.-A., Mohamed, G.-G., Omar, M.-M., and Nassar, M.-M., Eur. J. Chem., 2010, vol. 1, p. 282. doi org/10.5155/eurjchemCrossRefGoogle Scholar
  33. 33.
    Rehman, S.-U., Chohan, Z.-H., Naz, F., and Supuran, C.-T., J. Enz. Inhib. Med. Chem., 2005, vol. 4, p. 333. doi 10.1080/14756360500141911CrossRefGoogle Scholar
  34. 34.
    Sumrra, S.-H., Hanif, M., and Chohan, Z.-H., J. Enzyme Inhib. Med. Chem., 2015, vol. 30, p. 800. doi 10.3109/14756366.2014.976565CrossRefGoogle Scholar
  35. 35.
    Sumrra, S.-H., Hanif, M., Chohan, Z.-H., Akram, M.-S., Javeed, A. and Al-Shehri, S.-M., J. Enzyme. Inhib. Med. Chem., 2016, vol. 31, p. 590. doi 10.3109/14756366.2015.1050011Google Scholar
  36. 36.
    Rahman, A.U. Choudhary, M.I. and Thomsen, W.J., Bioassay Technigues for Drugs Developmen, Amsterdam: Harwood Academic Publishers, 2001, p. 14.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Chemical SciencesBahauddin Zakariya UniversityMultanPakistan
  2. 2.Department of ChemistryUniversity of GujratGujratPakistan
  3. 3.Department of ChemistryUniversity of SargodhaBhakkar Campus, SargodhaPakistan

Personalised recommendations