Russian Journal of General Chemistry

, Volume 87, Issue 6, pp 1364–1370 | Cite as

Nonwoven materials produced by melt electrospinning of commodity polymers

  • S. N. MalakhovEmail author
  • S. N. Chvalun
Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)


The article gives an overview of the published data on the nonwoven materials produced by melt electrospinning of commodity polymers. A historical background of the electrospinning process and its principle and technological aspects are covered. Approaches to control the average fiber diameter in the resulting materials, as well as the possibility to obtain nonwovens from mixtures of polymers, including combining the solution and melt methods, are presented.


electrospinning polymer melts nonwoven materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bose, G.M., Recherches sur la cause et sur la veritable theorie del’electricite, Wittenberg. 1745.Google Scholar
  2. 2.
    US Patent 692 631, 1902.Google Scholar
  3. 3.
    US Patent 705 691, 1902.Google Scholar
  4. 4.
    US Patent 745 276, 1903.Google Scholar
  5. 5.
    Lyons, J. and Ko, F., Polymer News, 2005, vol. 30, p. 170. doi 10.1080/00323910500458666CrossRefGoogle Scholar
  6. 6.
    US Patent 1 975 504, 1934.Google Scholar
  7. 7.
    Greiner, A. and Wendorff, J.H., Angew. Chem. Int. Ed., 2007, vol. 46, p. 5770. doi 10.1002/anie.200604646CrossRefGoogle Scholar
  8. 8.
    US Patent 2,048,651, 1936.Google Scholar
  9. 9.
    Petryanov, I.V., Kozlov, V.I., Basmanov, P.I., and Ogorodnikov, B.I., Voloknistye fil’truyushchie materialy FP (Fibrous Filtering Materials PF), Moscow: Znanie, 1968.Google Scholar
  10. 10.
    Filatov, Yu.N., Elektroformovanie voloknistykh materialov (EFV-protsess) [Electrospinning of Fibrous Materials (EFS Process)], Moscow: Neft’ i Gaz, 1997.Google Scholar
  11. 11.
    Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., and Ma, Z., An Introduction to Electrospinning and Nanofibers, Singapore: World Scientific, 2005.CrossRefGoogle Scholar
  12. 12.
    Reneker, D.H., Yarin, A.L., Zussman, E., and Xu, H., Adv. Appl. Mech., 2007, vol. 41, p. 43. doi 10.1016/S0065-2156(07)41002-XCrossRefGoogle Scholar
  13. 13.
    He, J.H., Wu, Y., and Zuo, W.-W., Polymer, 2005, vol. 46, p. 12637. doi 10.1016/j.polymer.2005.10.130CrossRefGoogle Scholar
  14. 14.
    Reneker, D.H. and Yarin, A.L., Polymer, 2008, vol. 49, p. 2387. doi 10.1016/j.polymer.2008.02.002CrossRefGoogle Scholar
  15. 15.
    Ryu, G.S., Oh, J.T., and Kim, H., Fiber. Polym., 2010, vol. 11, p. 36. doi 10.1007/s12221-010-0036-6CrossRefGoogle Scholar
  16. 16.
    Larrondo, L, Manley, R.St.J., J. Polym. Sci. Polym. Phys. Ed., 1981, vol. 19, p. 909. doi 10.1002/pol.1981.180190601CrossRefGoogle Scholar
  17. 17.
    Dalton, P.D., Klinkhammer, K., Salber, J., Klee, D., and Möller, M., Biomacromolecules, 2006, vol. 7, p. 686. doi 10.1021/bm050777qCrossRefGoogle Scholar
  18. 18.
    Dalton, P.D., Grafahrend, D., Klinkhammer, K., Klee, D., and Möller, M., Polymer, 2007, vol. 48, p. 6823. doi 10.1016/j.polymer.2007.09.037CrossRefGoogle Scholar
  19. 19.
    Deng, R., Liu, Y., Ding, Y., Xie, P., Luo, L., and Yang, W., J. Appl. Polym. Sci., 2009, vol. 114, p. 166. doi 10.1002/app. 29864CrossRefGoogle Scholar
  20. 20.
    Detta, N., Brown, T.D., Edin, F.K., Albrecht, K., Chiellini, F., Chiellini, E., Dalton, P.D., and Hutmacher, D.W., Polym. Int., 2010, vol. 59, p. 1558. doi 10.1002/pi.2954CrossRefGoogle Scholar
  21. 21.
    Wang, X.F. and Huang, Z.M., Chinese J. Polym. Sci., 2010, vol. 28, p. 45. doi 10.1007/s10118-010-8208-9CrossRefGoogle Scholar
  22. 22.
    Liu, Y., Deng, R., Hao, M., Yan, H., and Yang, W., Polym. Eng. Sci., 2010, vol. 50, p. 2074. doi 10.1002/pen.21753CrossRefGoogle Scholar
  23. 23.
    Cho, D., Zhou, H., Cho, Y., Audus, D., and Joo, Y.L., Polymer, 2010, vol. 51, p. 6005. doi 10.1016/j.polymer.2010.10.028CrossRefGoogle Scholar
  24. 24.
    Cho, D., Zhmayev, E, and Joo, Y.L., Polymer, 2011, vol. 52, p. 4600. doi 10.1016/j.polymer.2011.07.038CrossRefGoogle Scholar
  25. 25.
    Lyons, J., Li, C., and Ko, F., Polymer, 2004, vol. 45, p. 7597. doi 10.1016/j.polymer.2004.08.071CrossRefGoogle Scholar
  26. 26.
    Malakhov, S.N., Khomenko, A.Yu., Belousov, S.I., Prazdnichnyi, A.M., Chvalun, S.N., Shepelev, A.D., and Budyka, A.K., Fibre Chem., 2009, vol. 41, p. 355. doi 10.1007/s10692-010-9204-0CrossRefGoogle Scholar
  27. 27.
    Malakhov, S.N., Belousov, S.I., Prazdnichnyi, A.M., Chvalun, S.N., Negin, A.E., and Shepelev, A.D., Fibre Chem., 2012, vol. 43, p. 417. doi 10.1007/s10692-012-9375-yCrossRefGoogle Scholar
  28. 28.
    Belousov, S.I., Malakhov, S.N., Prazdnichnyi, A.M., and Chvalun, S.N., Butlerov. Soobshch., 2013, vol. 35, no. 7, p. 128.Google Scholar
  29. 29.
    Malakhov, S.N., Belousov, S.I., Bakirov, A.V., and Chvalun, S.N., Fibre Chem., 2015, vol. 47, p. 14. doi 10.1007/s10692-015-9631-z.CrossRefGoogle Scholar
  30. 30.
    Mazalevska, O., Struszczyk, M.H., Chrzanowski, M., and Krucinska, I., Fibres Text. East. Eur., 2011, vol. 19, p. 46.Google Scholar
  31. 31.
    Mazalevska, O., Struszczyk, M.H., and Krucinska, I., J. Appl. Polym. Sci., 2013, vol. 129, p. 779. doi 10.1002/app. 38818CrossRefGoogle Scholar
  32. 32.
    Ogata, N., Lu, G., Iwata, T., Yamaguchi, S., Nakane, K., Ogihara, T., J. Appl. Polym. Sci., 2007, vol. 104, p. 1368. doi 10.1002/app. 25872CrossRefGoogle Scholar
  33. 33.
    Ogata, N., Yamaguchi, S., Shimada, N., Lu, G., Iwata, T., Nakane, K., and Ogihara, T., J. Appl. Polym. Sci., 2007, vol. 104, p. 1640. doi 0.1002/app. 25782CrossRefGoogle Scholar
  34. 34.
    Ogata, N., Shimada, N., Yamaguchi, S., Nakane, K., and Ogihara, T., J. Appl. Polym. Sci., 2007, vol. 105, p. 1127. doi 10.1002/app. 26150CrossRefGoogle Scholar
  35. 35.
    Tian, S., Ogata, N., Shimada, N., Nakane, K., Ogihara, T., and Yu, M., J. Appl. Polym. Sci., 2009, vol. 113, p. 1282. doi 10.1002/app. 30096CrossRefGoogle Scholar
  36. 36.
    Shimada, N., Ogata, N., Nakane, K., and Ogihara, T., J. Appl. Polym. Sci., 2012, vol. 125, p. E384. doi 10.1002/app. 36820CrossRefGoogle Scholar
  37. 37.
    Li, X., Wang, Z., Wang, J., Liu, J., and Li, C., Polym. Eng. Sci., 2014, vol. 54, p. 1412.CrossRefGoogle Scholar
  38. 38.
    Zhou, H., Green, T.B., and Joo, Y.L., Polymer, 2006, vol. 47, p. 7497. doi 10.1016/j.polymer.2006.08.042CrossRefGoogle Scholar
  39. 39.
    Kong, C.S., Jo, K.J., Jo, N.K., and Kim, H.S., Polym. Eng. Sci., 2009, vol. 49, p. 391. doi 10.1002/pen.21303CrossRefGoogle Scholar
  40. 40.
    Kadomae, Y., Maruyama, Y., Sugimoto, M., Taniguchi, T., and Koyama, K., Fiber. Polym., 2009, vol. 10, p. 275. doi 10.1007/s12221-009-0275-6CrossRefGoogle Scholar
  41. 41.
    RU Patent 2493006, 2013.Google Scholar
  42. 42.
    Zhiyuan, C., He, J., Fengwen, Z., Yuexing, L., Yong, L., and Huilin, Y., J. Serb. Chem. Soc., 2014, vol. 79, p. 587. doi 10.2298/JSC130702150ZCrossRefGoogle Scholar
  43. 43.
    Cao, L., Dong, M., Zhang, A., Liu, Y., Yang, W., Su, Z., and Chen, X., Polym. Eng. Sci., 2013, vol. 53, p. 2674.CrossRefGoogle Scholar
  44. 44.
    McCann, J.T., Marquez, M., and Xia, Y., Nano Lett., 2006, vol. 6, p. 2868. doi 10.1021/nl0620839CrossRefGoogle Scholar
  45. 45.
    Li, F., Zhao, Y., Wang, S., Han, D., Jiang, L., and Song, Y., J. Appl. Polym. Sci., 2009, vol. 112, p. 269. doi 10.1002/app. 29384CrossRefGoogle Scholar
  46. 46.
    Kim, S.J., Jang, D.H., Park, W.H., and Min, B.M., Polymer, 2010, vol. 51, p. 1320. doi 10.1016/j.polymer.2010.01.025CrossRefGoogle Scholar
  47. 47.
    Li, X., Yang, W., Li, H., Wang, Y., Bubakir, M.M., Ding, Y., and Zhang, Y., J. Appl. Polym. Sci., 2015, vol. 132, p. 41601. doi 10.1002/app. 41601Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Karpov Institute of Physical ChemistryMoscowRussia

Personalised recommendations