Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 3, pp 365–372 | Cite as

Formation and thermal behavior of Aurivillius phases A m–1Bi2Fe m–3Ti3O3m+3–δ (A = Bi, Sr)

  • N. A. Lomanova
  • V. L. Ugolkov
  • V. V. Panchuk
  • V. G. Semenov
Article

Abstract

Solid-state chemical reactions in the Bi2O3–SrO–TiO2–Fe2O3 system have afforded layered perovskitetype oxides with the Aurivillius phases structure: (Bi1–х ,Sr х ) m–1Bi2Fe m–3Ti3O3m+3–δ (m = 4–7). Special features of their formation and thermal behavior have been studied.

Keywords

layered perovskite-type oxide Aurivillius phases thermal behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keeney, L., Maity, T., Schmidt, M., Amann, A., Deepak, N., Petkov, N., Roy, S., Pemble, M.E., and Whatmore, R.W., J. Am. Ceram. Soc., 2013, vol. 96, p. 2339. doi 10.1111/jace.12467CrossRefGoogle Scholar
  2. 2.
    Wang, G., Huang, Y., Sun Sh., Wang, J., Peng, R., and Lu, Y., J. Am. Ceram. Soc., 2016, vol. 99, p. 1318. doi 10.1111/jace.14108CrossRefGoogle Scholar
  3. 3.
    Horiuchi, S., Nagata, H., and Takenaka, T., Ferroelectrics, 2005, vol. 324, no. 1, p. 3. doi 10.1080/00150190500323404CrossRefGoogle Scholar
  4. 4.
    Kan, A., Ogawa, H., Inami, Y., and Moriyama, T., Physica (B), 2011, vol. 406, p. 3170. doi 10.1016/j.physb.2011.05.017CrossRefGoogle Scholar
  5. 5.
    Zurbuchen, M.A., Sherman, V.O., Tagantsev, A.K., Schubert, J., Hawley, M.E., Fong, D.D., Streiffer, S.K., Jia, Y., Tian, W., and Schlom, D.G., J. Appl. Phys., 2010, vol. 107, p. 024106. doi 10.1063/1.3273388CrossRefGoogle Scholar
  6. 6.
    Gelfuso, M.V., Thomazini, D., and Eiras, J.A., J. Am. Ceram. Soc., 1999, vol. 82, p. 2368. doi 10.1111/j.1151-2916.1999. tb02092.xCrossRefGoogle Scholar
  7. 7.
    Aurrivillius, B., Ark. Kemi., 1949, vol. 1, no. 1, p. 463.Google Scholar
  8. 8.
    Smolenskii, G.A., Isupov, V.A., and Agranovskaya, A., Physics of the Solid State, 1959, vol. 1, no. 1, p. 169.Google Scholar
  9. 9.
    Mandal, T.K., Sivakumar, T., Augustine, S., and Gopalakrishnan, J., Mater. Sci. Eng. (B), 2005, vol. 121, p. 112. doi 10.1016/j.mseb.2005.03.012CrossRefGoogle Scholar
  10. 10.
    Lomanova, N.A., Semenov, V.G., Panchuk, V.V., and Gusarov, V.V., J. Alloys Compd., 2012, vol. 528, p. 103. doi 10.1016/j.jallcom.2012.03.040CrossRefGoogle Scholar
  11. 11.
    Lomanova, N.A., Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2011, vol. 2, no. 3, p. 93.Google Scholar
  12. 12.
    Lomanova, N.A., Semenov, V.G., Panchuk, V.V., and Gusarov, V.V., Doklady Chem., 2012, vol. 447, no. 2, p. 293. doi 10.1134/S0012500812120087CrossRefGoogle Scholar
  13. 13.
    Hervoches Ch.H., Snedden, A., Riggs, R., Kilcoyne, S.H., Manuel, P., and Lightfoot Ph., J. Solid State Chem., 2002, vol. 164, p. 280. doi 10.1006/jssc.2001.9473CrossRefGoogle Scholar
  14. 14.
    Huang, Y., Wang, G., Sun Sh., Wang, J., Peng, R., Lin, Y., Zhai, X., Fu, Z., and Lu, Y., Sci. Rep., 2015, vol. 5, p. 15261. doi 10.1038/srep15261CrossRefGoogle Scholar
  15. 15.
    Birenbaum, A.Y. and Ederer, C., Phys. Rev. (B), 2014, vol. 90, p. 214109. doi 10.1103/PhysRevB.90.214109CrossRefGoogle Scholar
  16. 16.
    Jartych, E., Gaska, K., Przewoznik, J., Kapusta, C., Lisinska-Czekaj, A., Czekaj, D., and Surowiec, Z., Nukleonika, 2013, vol. 58, no. 1, p. 47.Google Scholar
  17. 17.
    Morozov, M.I. and Gusarov, V.V., Inorg. Mater., 2002, vol. 38, no. 7, p. 723. doi 10.1023/A:1016252727831CrossRefGoogle Scholar
  18. 18.
    Lomanova, N.A., Morozov, M.I., Ugolkov, V.L., Gusarov, V.V., Inorg. Mater., 2006, vol. 42, no. 2, p. 189. doi 10.1134/S0020168506020142CrossRefGoogle Scholar
  19. 19.
    Lomanova, N.A. and Gusarov, V.V., Inorg. Mater., 2011, vol. 47, no. 4, p. 420. doi 10.1134/S0020168511040169CrossRefGoogle Scholar
  20. 20.
    Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2012, vol. 3, no. 6, p. 112.Google Scholar
  21. 21.
    James, A.R., Kumar, G.S., Suryanarayana, S.V., and Bhimasankaram, T., Ferroelecrrics, 1996, vol. 189, p. 81. doi 10.1080/00150199608213408CrossRefGoogle Scholar
  22. 22.
    Ferrer, P., Iglesias, J.E., Ayala, A.P., and Guedes, I., Solid State Commun., 2005, vol. 136, no. 11, p. 621. doi 10.1016/j.ssc.2005.07.027CrossRefGoogle Scholar
  23. 23.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Inorg. Chem., 2010, vol. 55, no. 10, p. 1541. doi 10.1134/S0036023610100086CrossRefGoogle Scholar
  24. 24.
    Isupov, V.A., Inorg. Mater., 2006, vol. 42, no. 11, p. 1236. doi 10.1134/S0020168506110112CrossRefGoogle Scholar
  25. 25.
    Lomanova, N.A., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2007, vol. 33, no. 6, p. 608. doi 10.1134/S1087659607060120CrossRefGoogle Scholar
  26. 26.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Inorg. Chem., 2011, vol. 56, p. 616. doi 10.1134/S0036023611040188CrossRefGoogle Scholar
  27. 27.
    Reaney, I.M., Roulin, M., Shulman, H.S., and Setter, N., Ferroelectrics, 1995, vol. 165, no. 1, p. 295. doi 10.1080/00150199508228310CrossRefGoogle Scholar
  28. 28.
    Kennedy, B.J., Zhou, Q., Kubota Ismunandar, Y., and Kato, K., J. Solid State Chem., 2008, vol. 181, p. 1377. doi 10.1016/j.jssc.2008.02.015CrossRefGoogle Scholar
  29. 29.
    Salazar-Kuri, U., Mendoza, M.E., Siqueiros, J.M., Gervacio-Arciniega, J.J., and Silva, R., Mater. Res. Express, 2014, vol. 1, p. 045702. doi 10.1088/2053-1591/1/4/045702CrossRefGoogle Scholar
  30. 30.
    Suarez, D.Y., Reaney, I.M., and Lee, W.E., J. Mater. Res., 2001, vol. 16, no. 11, p. 3139. doi 10.1557/JMR.2001.0433CrossRefGoogle Scholar
  31. 31.
    Golubeva, O.Yu., Semenov, V.G., Volodin, V.S., and Gusarov, V.V., Glass Phys. Chem., 2009, vol. 35, no. 3, p. 313. doi 10.1134/S1087659609030122CrossRefGoogle Scholar
  32. 32.
    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70CrossRefGoogle Scholar
  33. 33.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. doi 10.1134/S1070363213120049CrossRefGoogle Scholar
  34. 34.
    Perejon, A., Sanchez-Jimenez, P. E., Criado, J.M., and Perez-Maque-da, L.A., J. Phys. Chem. (C), 2014, vol. 118, p. 26387. doi 10.1021/jp507831jGoogle Scholar
  35. 35.
    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. doi 1070-3632/97/6712-1846Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Lomanova
    • 1
  • V. L. Ugolkov
    • 2
  • V. V. Panchuk
    • 3
  • V. G. Semenov
    • 3
  1. 1.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Grebenshchikov Institute of SilicatesRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations