Russian Journal of General Chemistry

, Volume 87, Issue 2, pp 252–258 | Cite as

Disulfide derivatives of thiosemicarbazones of 4-formyl-5-thiopyrazole

  • A. I. Uraev
  • M. S. Korobov
  • L. D. Popov
  • G. G. Aleksandrov
  • E. V. Korshunova
  • D. A. Garnovskii
  • A. S. Burlov
Article

Abstract

The reaction of 4-formyl-5-mercaptopyrazole with thiosemicarbazides in methanol has afforded novel disulfide derivatives of thiosemicarbazones, and their structure has been studied by NMR and IR spectroscopy. X-ray diffraction analysis of [5,5'-dithiobis(4-formyl-3-methyl-1-phenylpyrazole)]-4-allylthio-semicarbazone has shown that it exists as a dimer with two molecules linked via the disulfide S–S bridge between the heterocycles in the crystal.

Keywords

disulfide derivative thiosemicarbazone tautomerism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Girisha, K.S., Kalluraya, B., Narayana, V., Eur. J. Med. Chem., 2010, vol. 45, no. 10, p. 4640. doi 10.1016/j.ejmech.2010.07.032CrossRefGoogle Scholar
  2. 2.
    Beraldo, H. and Gambino, D., Mini-Rev. Med. Chem., 2004, vol. 4, no. 1, p. 31. doi 10.2174/1389557043487484CrossRefGoogle Scholar
  3. 3.
    Vieira, R.P., Lessa, J.A., Ferreira, W.C., Costa, F.B., Bastos, L.F.S., Rocha, W.R., Coelho, M.M., and Beraldo, H., Eur. J. Med. Chem., 2012, vol. 50, p. 140. doi 10.1016/j.ejmech.2012.01.048CrossRefGoogle Scholar
  4. 4.
    Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., and Marzano, C., Chem. Rev., 2014, vol. 114, no. 1, p. 815. doi 10.1021/cr400135xCrossRefGoogle Scholar
  5. 5.
    Guo, J., Liu, L., Liu, G., Jia, D., and Xie, X., Org. Lett., 2007, vol. 9, no. 20, p. 3989. doi 10.1021/ol7016005CrossRefGoogle Scholar
  6. 6.
    Xie, X., Liu, L., Jia, D., Guo, J., Wu, D., and Xie, X., New J. Chem., 2009, vol. 33, no. 11, p. 2232.CrossRefGoogle Scholar
  7. 7.
    Guo, J., Jia, D., Liu, L., Yuan, H., Guo, M., Wu, D., and Li, F., J. Mater. Chem., 2011, vol. 21, no. 33, p. 12202. doi 10.1039/C1JM12267CCrossRefGoogle Scholar
  8. 8.
    Guo, M., Guo, J., Jia, D., Liu, H., Liu, L., Liu, A., and Li, F., J. Mol. Struct., 2013, vol. 1035, p. 271. doi 10.1016/j.molstruc.2012.06.001CrossRefGoogle Scholar
  9. 9.
    Zhong, Y., Liu, L., Liu, G., Wu, D., Guo, J., and Jia, D., J. Mol. Struct., 2008, vol. 889, nos. 1–3, p. 259. doi 10.1016/j.molstruc.2008.02.021CrossRefGoogle Scholar
  10. 10.
    Kvitko, I.Ya. and Porai-Koshits, B.A., Zh. Org. Khim., 1969, vol. 5, no. 9, p. 1685.Google Scholar
  11. 11.
    Stelzig, L., Kotte, S., and Krebs, B., J. Chem. Soc. Dalton Trans., 1998, no. 17, p. 2921. doi 10.1039/A802334DCrossRefGoogle Scholar
  12. 12.
    Kötte, S., Stelzig, L., Wonnemann, R., Krebs, B., and Steiner, A., Z. Anorg. Allg. Chem., 2000, vol. 626, no. 7, p. 1575. doi 10.1002/1521-3749(200007)626:7<1575:: AID-ZAAC1575>3.0.CO;2-UCrossRefGoogle Scholar
  13. 13.
    Kötte, S., Jolk, I., and Krebs, B., J. Prakt. Chem., 2000, vol. 342, no. 1, p. 1. doi 10.1002/(SICI)1521-3897 (200001)342:1<1::AID-PRAC1>3.0.CO;2-VCrossRefGoogle Scholar
  14. 14.
    Sawusch, S. and Schilde, U., Z. Naturforsch. (B), 1999, vol. 54, no. 7, p. 881.Google Scholar
  15. 15.
    Liu, L., Ji, Y.-L., Jia, D.-Z., Liu, G.-F., and Yu, K.-B., Chin. J. Chem., 2005, vol. 23, no. 1, p. 63. doi 10.1002/cjoc.200590014CrossRefGoogle Scholar
  16. 16.
    Jacob, C., Giles, G.I., Giles, N.M., and Sies, H., Angew. Chem. Int. Ed., 2003, vol. 42, no. 39, p. 4742. doi 10.1002/anie.200300573CrossRefGoogle Scholar
  17. 17.
    Netto, L.E.S., Oliveira, M.A., Monteiro, G., Demasi, A.P.D., Cussiol, J.R.R., Discola, K.F., Demasi, M., Silva, G.M., Alves, S.V., Faria, V.G., and Horta, B.B., Comp. Biochem. Physiol. (C), 2007, vol. 146, nos. 1–2, p. 180. doi 10.1016/j.cbpc.2006.07.014Google Scholar
  18. 18.
    Leovac, V.M., Novakovic, S.B., Bogdanovic, G.A., Joksovic, M.D., Mészáros Szécsényi, K., and Cešljevic, V.I., Polyhedron, 2007, vol. 26, no. 14, p. 3783. doi 10.1016/j.poly.2007.04.012CrossRefGoogle Scholar
  19. 19.
    Khimiya gidrazonov (Chemistry of Hydrazones), Kitaev, Yu.P., Ed., Moscow Nauka, 1977.Google Scholar
  20. 20.
    Zelenin, K.N., Kuznetsova, O.B., Alekseev, V.V., Kalvin’sh, I.Y., and Leitis, L.Y., Chem. Heterocycl. Compd., 1994, vol. 30, no. 1, p. 107. doi 10.1007/bf01164745CrossRefGoogle Scholar
  21. 21.
    Tang, X.-C., Jia, D.-Z., Liang, K., Zhang, X.-G., Xia, X., and Zhou, Z.-Y., J. Photochem. Photobiol. (A), 2000, vol. 134, nos. 1–2, p. 23. doi 10.1016/S1010-6030(00) 00242-2CrossRefGoogle Scholar
  22. 22.
    Vyas, K.M., Jadeja, R.N., Patel, D., Devkar, R.V., and Gupta, V.K., Polyhedron, 2013, vol. 65, p. 262. doi 10.1016/j.poly.2013. 08.051CrossRefGoogle Scholar
  23. 23.
    Bogomolov, S.G., Postovskii, I.Ya., and Sheinker, Yu.N., Dokl. Akad. Nauk SSSR, 1953, vol. 140, no. 5, p. 1111.Google Scholar
  24. 24.
    West, D.X., Liberta, A.E., Padhye, S.B., Chikate, R.C., Sonawane, P.B., Kumbhar, A.S., and Yerande, R.G., Coord. Chem. Rev., 1993, vol. 123, nos. 1–2, p. 49. doi 10.1016/0010-8545(93)85052-6CrossRefGoogle Scholar
  25. 25.
    Wang, J., Liu, L., Liu, G., Zhang, L., and Jia, D., Struct. Chem., 2007, vol. 18, no. 1, p. 59. doi 10.1007/s11224- 006-9121-2CrossRefGoogle Scholar
  26. 26.
    Mirza, A.H., Hamid, M.H.S.A., Aripin, S., Karim, M.R., Arifuzzaman, M., Ali, M.A., and Bernhardt, P.V., Polyhedron, 2014, vol. 74, p. 16. doi 10.1016/j.poly.2014.02.016CrossRefGoogle Scholar
  27. 27.
    Yadav, P.N., Demertzis, M.A., Kovala-Demertzi, D., Skoulika, S., and West, D.X., Inorg. Chim. Acta, 2003, vol. 349, p. 30. doi 10.1016/S0020-1693(03)00087-2CrossRefGoogle Scholar
  28. 28.
    Toropchina, A.V., Yanilkin, V.V., Morozov, V.I., Sysoeva, L.P., Movchan, A.I., Buzykin, B.I., and Chmutova, G.A., Russ. J. Electrochem., 2003, vol. 39, no. 11, p. 1181. doi 10.1023/b:ruel.0000003444.21581.05CrossRefGoogle Scholar
  29. 29.
    Orpen, A.G., Brammer, L., Allen, F.H., Kennard, O., Watson, D.G., and Taylor, R., J. Chem. Soc. Dalton Trans., 1989, no. 12, p. S1. doi 10.1039/DT98900000S1Google Scholar
  30. 30.
    Bruker SAINT-Plus, Bruker AXS Inc. Madison, Wisconsin, USA, 2001.Google Scholar
  31. 31.
    Sheldrick, G.M., SADABS, Bruker AXS Inc. Madison,WI-53719, 1997.Google Scholar
  32. 32.
    Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. doi 10.1107/S0108767307043930CrossRefGoogle Scholar
  33. 33.
    Nivorozhkin, A.L., Korobov, M.S., Konstantinovskii, L.E., Nivorozhkin, L.E., and Minkin, V.I., Zh. Obshch. Khim., 1985, vol. 55, no. 4, p. 849.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Uraev
    • 1
  • M. S. Korobov
    • 1
  • L. D. Popov
    • 2
  • G. G. Aleksandrov
    • 3
  • E. V. Korshunova
    • 1
  • D. A. Garnovskii
    • 4
  • A. S. Burlov
    • 1
  1. 1.Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  2. 2.Chemical DepartmentSouthern Federal UniversityRostov-on-DonRussia
  3. 3.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations