Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2924–2927 | Cite as

Silica tungstic acid and sulphated silica tungstic acid as highly efficient solid acid catalysts for the synthesis of pyrrole derivatives

  • F. MoradgholiEmail author
  • J. Lari
  • Y. Baratian
Article

Abstract

In the present study silica supported tungstic acid (STA) and sulphated silica tungstic acid (SSTA) were applied as efficient and cost-effective solid acid catalysts in the synthesis of N-substituted pyrrole derivatives via the Paal–Knorr reaction of 2,5-hexadione with aromatic and aliphatic amines at room temperature. The reaction completed in short time under mild conditions with high yield. The catalysts could be easily recovered upon reaction completion. Structures of all products were confirmed by elemental analysis, FT-IR, 1H and 13C NMR spectra.

Keywords

Paal–Knorr pyrrole sulphated silica tungstic acid 2,5-hexadione silica tungstic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knorr, L., Ann., 1886, vol. 236, p. 290. doi 10.1002/jlac.18862360303Google Scholar
  2. 2.
    Hantzsch, A., Ber. Dtsch. Chem.Ges., 1890, vol. 23, p. 1474.CrossRefGoogle Scholar
  3. 3.
    Paal, C., Ber. Dtsch. Chem.Ges. 1884, vol. 17, p. 2756.CrossRefGoogle Scholar
  4. 4.
    Knorr, L., Ber. Dtsch. Chem.Ges., 1884, vol. 17, p. 2863.CrossRefGoogle Scholar
  5. 5.
    Ragno, R., Marshall, G.R., Di Santo, R., Costi, R., Massa, S., Rompei, R., and Artico, M., Biorog. Med. Chem. Lett., 2000, vol. 8, p. 1423.CrossRefGoogle Scholar
  6. 6.
    Banik, B.K., Samajdar, S., and Bnik, I., J. Org. Chem., 2004, vol. 69, p. 213.CrossRefGoogle Scholar
  7. 7.
    Ballini, R., Barboni, L., Bosica, G., and Petrini, M., Synlett, 2000, p. 391.Google Scholar
  8. 8.
    Wang, B., Gu, Y., and Luo, C., Tetrahedron Lett., 2004, vol. 45, p. 3417.CrossRefGoogle Scholar
  9. 9.
    Sreekumar, R. and Padmakumar, R., Synth. Commun., 1998, vol. 28, p. 1661.CrossRefGoogle Scholar
  10. 10.
    Texier-Boullet, F., Klein, B., and Hamelin, J., Synthesis, 1986, vol. p. 409.Google Scholar
  11. 11.
    Luo, H., Kang, Y., Li, Q., and Yang, L., Heteroatom. Chem., 2008, vol. 19, p. 2643.CrossRefGoogle Scholar
  12. 12.
    Banik, B.K., Banik, I., Renteriaa, M., and Asgupta, D.S.K., Tetrahedron Lett., 2005, vol. 46, p. 2643.CrossRefGoogle Scholar
  13. 13.
    Chen, J., Wu. H., Zheng, Z., Jin, C., Zhang, X., and Su, W., Tetrahedron Lett., 2006, vol. 47, p. 5383.CrossRefGoogle Scholar
  14. 14.
    Curini, M., Montanari, F., Rosati, O., Lioy, E., and Margarita, R., Tetrahedron Lett., 2003, vol. 44, p. 3923.CrossRefGoogle Scholar
  15. 15.
    Yu, X.S. and Quesne, P.W.L., Tetrahedron Lett., 1995, vol. 36, p. 6205.CrossRefGoogle Scholar
  16. 16.
    Ballini, R., Barboni, L., Bosica, G., and Petrini, M., Synlett, 2000, p. 391.Google Scholar
  17. 17.
    Raghavan, S. and Anuradha, K., Synlett, 2003, p. 711.Google Scholar
  18. 18.
    Karami, B., Hashghaee, V., and Khodabakhshi, S., Catal Commun., 2012, vol. 20, p. 71.CrossRefGoogle Scholar
  19. 19.
    Karami, B., Khodabakhshi, S., and Eskandari, K., Chem. Papers, 2013, vol. 67, p. 1474.Google Scholar
  20. 20.
    Ahmed, N. and Siddiqui, Z.N., J. Mol. Cat. A, 2014, vol. 387, p. 45.CrossRefGoogle Scholar
  21. 21.
    Karami, B., Hashghaee, V., and Khodabakhshi, S., Catal. Commun., 2012, vol. 20, p. 71.CrossRefGoogle Scholar
  22. 22.
    Karami, B., Khodabakhshi, S., and Eskandari, K., Chem. Papers, 2013, vol. 67, p. 1474.Google Scholar
  23. 23.
    Ahmed, N. and Siddiqui, Z.N., J. Mol. Cat. A, 2014, vol. 387, p. 45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Chemistry DepartmentPayame Noor UniversityTehranIran

Personalised recommendations