Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2807–2816 | Cite as

Manganese(II) complexes of biological relevance: Synthesis and spectroscopic characterization of novel manganese(II) complexes with monobasic bidentate ligands derived from halo-substituted 1H-indole-2,3-diones

  • S. SharmaEmail author
  • R. Meena
  • Y. Satyawana
  • N. Fahmi


Novel biologically significant manganese(II) complexes with four monobasic bidentate ligands L1H [2-(5-fluoro-2-dihydro-2-oxo-1H-indol-3-ylidene)hydrazinecarboxamide], L2H [2-(5-fluoro-2-dihydro-2-oxo-1H-indol-3-ylidene)hydrazinecarbothioamide], L3H [2-(5-bromo-2-dihydro-2-oxo-1H-indol-3-ylidene)hydrazinecarboxamide] and L4H [2-(5-bromo-2-dihydro-2-oxo-1H-indol-3-ylidene)hydrazinecarbothioamide] were synthesized by complexation of the ligands with MnCl2·4H2O in 1: 1 and 1: 2 molar ratios in methanol. The Schiff base ligands and complexes were characterized by elemental analyses, melting points, molecular weights, IR, 1H and 13C NMR, UV–Vis, EPR, and mass spectra, as well as X-ray powder diffraction patterns. Based on the spectral data, a tetrahedral geometry was proposed for all the synthesized metal complexes. The ligands and complexes were tested in vitro against bacteria (Escherichia coli and Staphylococcus aureus) and fungi (Fusarium semitectum and Aspergillus flavus) to show that they were active against all the microbial strains examined, and the metal complexes were more active in comparison with the ligands. DNA cleavage activity of the complexes was examined by gel electrophoresis.


Schiff bases metal complexes spectroscopy antimicrobial activity DNA cleavage activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fahmi, N. and Singh, R.V., Transition Met. Chem., 1994, vol. 19, p. 453. doi 10.1007/BF0a0139327Google Scholar
  2. 2.
    Türkkan, B., Sariboga, B., and Sariboga, N., Transition Met. Chem., 2011, vol. 36, p. 679. doi 10.1007/s11243- 011-9518-7CrossRefGoogle Scholar
  3. 3.
    Singh, K., Barwa, M. S., and Tyagi, P., Eur. J. Med. Chem., 2006, vol. 41, p. 147. doi 10.1016/j.ejmech.2005.06.006CrossRefGoogle Scholar
  4. 4.
    Majumder, A., Rosair, G. M., Mallick, A., Chattopadhyay, N., and Mitra, S., Polyhedron, 2006, vol. 25, p. 1753. doi 10.1016/j.poly.2005.11.029CrossRefGoogle Scholar
  5. 5.
    Freiria, A., Bastida, R., Valencia, L., Macias, A., and Lodeiro, C., Inorg. Chim. Acta., 2006 vol. 359, p. 2383. doi 10.1016/j.ica.2005.12.055Google Scholar
  6. 6.
    Chohan, Z.H., Rauf, A., and Supuran, C.T., Met. Based Drugs, 2001, vol. 8, p. 287. doi 10.1155/MBD.2002.287CrossRefGoogle Scholar
  7. 7.
    Osowale, A., Kolawale, G.A., and Fagade, O.E., J. Coord. Chem., 2008, vol. 67, p. 1046. doi 10.1080/00958970701482446CrossRefGoogle Scholar
  8. 8.
    Shamsipur, M., Yousefi, M., Hosseini, M., Ganjali, M., Sharghi, H., and Naeimi, H.A., Anal. Chem., 2001, vol. 73, p. 2869. doi 10.1021/ac001449dCrossRefGoogle Scholar
  9. 9.
    Genin, J.M., Biles, C., Keiser, J.B., Poppe, S.M, Swaney, S.M., Tarpley, W.G., Romero, D.L., and Yage, Y.., J. Med. Chem., 2000, vol. 43, p. 1034. doi 10.1021/jm990383fCrossRefGoogle Scholar
  10. 10.
    Nishat, N., Khan, S. A., Parveen, S., and Rasool, R., J. Coord. Chem., 2010, vol. 63, p. 3944. doi 10.1080/00958972.2010.526207CrossRefGoogle Scholar
  11. 11.
    Somogyi, L., Bull. Chem. Soc. Jpn., 2001, vol. 74, p. 873. doi 10.1246/bcsj.74.873CrossRefGoogle Scholar
  12. 12.
    Nejo, A.A., Kolawole, G.A., Dumbele, M.C., and Opoku, A.R., J. Coord. Chem., 2010, vol. 63, p. 4367. doi 10.1080/00958972.2010.539684CrossRefGoogle Scholar
  13. 13.
    Yang, M., Zhang, Y.H., Li, M.X., Lu, Y.L., and Zhang, N., J. Coord. Chem., 2013, vol. 66, p. 3327. doi 10.1080/00958972.2013.834333CrossRefGoogle Scholar
  14. 14.
    Bal, T. R., Anand, B., Yogeeswari, P., and Sriram, D., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 4451. doi 10.1016/j.bmcl.2005.07.046CrossRefGoogle Scholar
  15. 15.
    Pandeya, S.N. and Sriram, D., Acta. Pharm. Turc., 1998, vol. 40, p. 33.Google Scholar
  16. 16.
    Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez Arguelles, M.C., Rogolino, D., Solinas, C., and Zani, F., J. Inorg. Biochem., 2005, vol. 99, p. 397. doi 10.1016/j.jinorgbio.2004.10.008CrossRefGoogle Scholar
  17. 17.
    Cerchiaro, G., Aquilano, K., Filomeni, G., Rotilio, G., Ciriolo, M.R., and Ferriera, A.M.D.C., J. Inorg. Biochem., 2005, vol. 99 p. 1433. doi 10.1016/j.jinorgbio.2005.03.013CrossRefGoogle Scholar
  18. 18.
    Verma, M., Pandeya, S.N., Singh, K.N., and Stables, J.P., Acta. Pharm., 2004, vol. 54, p. 49.PubMedGoogle Scholar
  19. 19.
    Jarrahpour, A., Khalili, D., Clercq, E D., Salmi, C., and Brunel, J.M., Molecules, 2007, vol. 12, p. 1720. doi 10.3390/12081720CrossRefGoogle Scholar
  20. 20.
    Rainsford, K.D. and Whitehouse, M.W., J. Pharm. Pharmacol., 1976, vol. 28, p. 83. doi 10.1111/j.2042- 7158.1976.tb04035.xCrossRefGoogle Scholar
  21. 21.
    Ferrari, M.B., Capacchi, S., Bisceglie, F., Pelosi, G., and Tarasconi, P., Inorg. Chim. Acta., 2001, vol. 312, p. 81. doi 10.1016/S0020-1693(00)00339-XCrossRefGoogle Scholar
  22. 22.
    Singh, L., Mohan, G., Prashar, R. K., Tripathi, S.P., and Sharma, R.C., Curr. Sci., 1986, vol. 55, p. 846.Google Scholar
  23. 23.
    Elsome, A.M., Hamilton-Miller, J.M.T., Brumfitt, W., and Noble, W.C., J. Antimicrob. Chemother., 1996, vol. 37, p. 911. doi 10.1093/jac/37.5.911CrossRefGoogle Scholar
  24. 24.
    Badwaik, V.B., Deshmukh, R.D., and Aswar, A.S., J. Coord. Chem., 2009, vol. 62, p. 2037. doi 10.1080/00958970902741244CrossRefGoogle Scholar
  25. 25.
    Li, Y., Wu, Y., Zhao, J., and Yang, P., J. Inorg. Biochem. 2007 vol. 101, p. 283. doi 10.1016/j.jinorgbio.2006.10.004Google Scholar
  26. 26.
    Zhang, N., Fan, Y.H., Bi, C.F., Zuo, J., Zhang, P.F., Zhang, Z.Y., and Zhu, Z., J. Coord. Chem., 2013, vol. 66, p. 1933. doi 10.1080/00958972.2013.796039CrossRefGoogle Scholar
  27. 27.
    Wang, X.L., Chao, H., Hong, L., Hong, X.L., Nian, Ji.L., and Yuan, Li.X., J. Inorg. Biochem., 2004, vol. 98, p. 423. doi 10.1016/j.jinorgbio.2003.12.006CrossRefGoogle Scholar
  28. 28.
    Patil, S.A, Naik, V.H., Kumar, A., Kulkarni, D., Kamble, U.K., Bagihalli, G.B., and Badami, P.S., J. Coord. Chem., 2010, vol. 63, p. 688. doi 10.1016/j.jinorgbio.2003.12.006CrossRefGoogle Scholar
  29. 29.
    Raman, N., Jeyamurugan, R., Rani, R.U., Baskaran, T., and Mitu, L., J. Coord. Chem., 2010, vol. 63, p. 1629. doi 10.1080/00958972.2010.485643CrossRefGoogle Scholar
  30. 30.
    Bagihalli, G.B. and Patil, S.A., J. Coord. Chem., 2009, vol. 62, p. 1690. doi 10.1080/00958970802668851CrossRefGoogle Scholar
  31. 31.
    Barve, V., Ahmed, F., Adsule, S., and Banerjee, S., J. Med. Chem., 2006, vol. 49, p. 3800. doi 10.1021/jm051068yCrossRefGoogle Scholar
  32. 32.
    Saglam, N., Colak, A., Serbest, K., Dülger, S., Güner, S., Karaböcek, S., and Beldüz, A.O., Bio. Metals., 2002, vol. 15, p. 357. doi 10.1023/A:1020228723299Google Scholar
  33. 33.
    Refat, M.S., El-Deen, I.M., Anwer, Z.M., and El-Ghol, S., J. Coord. Chem., 2009, vol. 62, p. 1709. doi 10.1080/00958970802684205CrossRefGoogle Scholar
  34. 34.
    Gupta, K.C. and Sutar, A.K., Coord Chem Rev., 2008, vol. 252, p. 1420. doi 10.1016/j.ccr.2007.09.005CrossRefGoogle Scholar
  35. 35.
    Zhou, Y. and Peng, J.N., J. Coord. Chem., 2013, vol. 15, p. 2597. doi 10.1080/00958972.2013.811495CrossRefGoogle Scholar
  36. 36.
    Cozzi, P.G., Chem. Soc. Rev., 2004, vol. 33, p. 410. doi 10.1039/B307853CCrossRefGoogle Scholar
  37. 37.
    Fahmi, N., Sharma, D.K., and Singh, R.V., Synth. React. Inorg. Met. Org. Chem., 1994, vol. 24, p. 377. doi 10.1080/00945719408000118CrossRefGoogle Scholar
  38. 38.
    Joseph, J. and Mehta, B.H. Russ. J. Coord. Chem., 2007, vol. 33, p. 124. doi 10.1134/S1070328407020091Google Scholar
  39. 39.
    Saxena, C., Bhardwaj, N. C., Singh, D., and Singh, R.V., Synth. React. Inorg. Met. Org. Chem., 1993, vol. 23, p. 1391. doi 10.1080/15533179308016694CrossRefGoogle Scholar
  40. 40.
    Raman, N., Thalamuthu, S., Raja, J.D., Neelakandan, M.A., and Banerjee, S., J. Chil. Chem. Soc., 2008, vol. 53(1), p. 1450. doi 10.4067/S0717-97072008000100025Google Scholar
  41. 41.
    Sampath, K. and Jayabalakrishnan, C., J. Environ. Nanotechnol., 2013, vol. 2(4), p. 34. doi 10.13074/jent.2013.12.132043CrossRefGoogle Scholar
  42. 42.
    Vogel, A.I., A Textbook of Organic Quantitative Analysis, London, 2004, 5th ed.Google Scholar
  43. 43.
    Makode, J.T. and Aswar, A.S., Indian J. Chem., 2004, vol. 43A, p. 2120. Scholar
  44. 44.
    Vogel, A.I., A Textbook of Quantitative Chemical Analysis, London, 2006, 6th ed.Google Scholar
  45. 45.
    Zahid, H., Chohan, M., and Arif, M.S., Appl. Organomet. Chem., 2007, vol. 21, p. 294. doi 10.1002/aoc.1200CrossRefGoogle Scholar
  46. 46.
    Raman, N., Raja, J. D., Sakthivel, A., J. Chem. Sci., 2007, vol. 119, p. 303. doi 10.1007/s12039-007-0041-5CrossRefGoogle Scholar
  47. 47.
    Arish, D. and Nair, M.S., J. Coord. Chem., 2010, vol. 63, p. 1619. doi 10.1080/00958972.2010.483729CrossRefGoogle Scholar
  48. 48.
    Kapoor, P., Singh, R.V., and Fahmi, N., J. Coord. Chem., 2012, vol. 65(2), p. 262. doi 10.1080/00958972.2011.649265CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of RajasthanJaipurIndia

Personalised recommendations