Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2797–2803 | Cite as

Synthesis, antioxidant properties, and reaction kinetics of aliphatic diamine bridged hindered phenols

  • C. Q. LiEmail author
  • S. Y. Guo
  • J. Wang
  • W. G. Shi
Article
  • 24 Downloads

Abstract

A series of aliphatic diamine bridged hindered phenols was synthesized. Their antioxidant activity was evaluated for assessing the role of bridging groups in trapping 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and in 2,2'-azodi(isobutyronitrile) (AIBN) induced oxidation of styrene. The study of reaction kinetics of scavenging of the peroxyl radicals demonstrated that the scavenging ability of the DPPH free radical decreased when length of the bridging groups increased. However, the ability to protect styrene from AIBN-induced oxidation increased with increased length of the bridging groups.

Keywords

hindered phenol bridged group antioxidant ability DPPH kinetic behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Földes, E., Maloschik, E., Kriston, I., Staniek, P., and Pukánszky, B., Polym. Degrad. Stab., 2006, vol. 91, no. 3, p. 479. doi 10.1016/j.polymdegradstab.2005.03.024CrossRefGoogle Scholar
  2. 2.
    Tátraaljai, D., Vámos, M., Orbán-Mester, Á., Staniek, P., Földes, E., and Pukánszky, B., Polym. Degrad. Stab., 2014, vol. 99, no. 13, p. 196. doi 10.1016/j.polymdegradstab.2013.11.005CrossRefGoogle Scholar
  3. 3.
    Liu Z.Q., Chem. Rev., 2010, vol. 110, no. 10, p. 5675. doi 10.1021/cr900302xCrossRefGoogle Scholar
  4. 4.
    Xi, G.L. and Liu, Z.Q., Eur. J. Med. Chem., 2013, vol. 68, no. 10, p. 385. doi 10.1016/j.ejmech.2013.06.059CrossRefGoogle Scholar
  5. 5.
    Alisi, M.A., Brufani, M., Cazzolla, N., Ceccacci, F., Dragone, P., Felici, M., and Leonelli, F., Tetrahedron, 2012, vol. 68, no. 49, p. 10180. doi 10.1016/j.tet.2012.09.098CrossRefGoogle Scholar
  6. 6.
    Sharma, O.P. and Bhat, T.K., Food. Chem., 2009, vol. 113, no. 4, p. 1202. doi 10.1016/j.foodchem.2008.08.008CrossRefGoogle Scholar
  7. 7.
    Jia, Z.S., Zhou, B., Yang, L., Wu, L.M., and Liu, Z.L., J. Chem. Soc., Dalton. Trans., 1998, vol. 4, no. 4, p. 911. doi 10.1039/A706691KGoogle Scholar
  8. 8.
    Kajiyama, T. and Ohkatsu, Y., Polym. Degrad. Stab., 2001, vol. 71, no. 3, p. 445. doi 10.1016/S0141-3910 (00)00196-8CrossRefGoogle Scholar
  9. 9.
    Penketh, G. E, J. Appl. Chem., 2007, vol. 7, no. 9, p. 512. doi 10.1002/jctb.5010070907Google Scholar
  10. 10.
    Scott, G., Chem. Ind., 1963, no. 7, p. 271.Google Scholar
  11. 11.
    Osorio, M., Aravena, J., Vergara, A., Taborga, L., Baeza, E., Catalán, K., and Espinoza, L., Molecules, 2012, vol. 17, no. 1, p. 556. doi 10.3390/molecules17010556CrossRefGoogle Scholar
  12. 12.
    Loshadkin, D., Roginsky, V., and Pliss, E., Int. J. Chem. Kinet., 2002, vol. 34, no. 3, p. 162. doi 10.1002/kin.10041CrossRefGoogle Scholar
  13. 13.
    Bondet, V., Brand-Williams, W., and Berset, C., LWTFood. Sci. Technol., 1997, vol. 30, no. 6, p. 609. doi 10.1006/fstl.1997.0240.Google Scholar
  14. 14.
    Brand-Williams, W., Cuvelier, M.E., and Berset, C.L.W.T., LWT-Food. Sci. Technol., 1995, vol. 28, no. 95, p. 25. doi 10.1016/S0023-6438(95)80008-5CrossRefGoogle Scholar
  15. 15.
    Viglianisi, C., Bartolozzi, M.G., Pedulli, G.F., Amorati, R., and Menichetti, S., Chem., 2011, vol. 17, no. 44, p. 12396. doi 10.1002/chem.201101146.CrossRefGoogle Scholar
  16. 16.
    Burton, G.W. and Ingold, K.U., J. Am. Chem. Soc., 1981, vol. 103, no. 21, p. 6472. doi 10.1021/ja00411a035CrossRefGoogle Scholar
  17. 17.
    Bebe, S., Yu, X., Hutchinson, R.A., and Broadbelt, L., J. Macromol. Symp., 2006, vol. 243, no. 1, p. 179.CrossRefGoogle Scholar
  18. 18.
    Freyaldenhoven, M.A., Lehman, P.A., Franz, T.J., Lloyd, R.V., and Samokyszyn, V.M., Chem. Res. Toxicol., 1998, vol. 11, no. 2, p. 102. doi 10.1021/tx970044uCrossRefGoogle Scholar
  19. 19.
    Kurechi, T. and Kato, T., Chem. Pharm. Bull., 1982, vol. 30, p. 2964. http://doi.org/10.1248/cpb.30.2964CrossRefGoogle Scholar
  20. 20.
    Cuvelier, M.E., Thèse en Sciences Alimentaires, ENSIA, Massy, 1992, p. 64.Google Scholar
  21. 21.
    Russell K.E., J. Phys. Chem.,1954, no. 5, p. 437. doi 10.1021/j150515a014Google Scholar
  22. 22.
    Wang, J., Zhang, H. P., Li, C.Q., Yang, H.J., and Di, X.H., Fine. Chem. Intermed., 2007, vol. 37, no. 5, p. 61. doi 1009-9212(2007)05-0061-03Google Scholar
  23. 23.
    Mishra, K., Ojha, H., and Chaudhury, N.K., Good. Chem., 2012, vol. 130, no. 4, p. 1036. doi 10.1016/j.foodchem.2011.07.127Google Scholar
  24. 24.
    Villano, D., Fernández-Pachón, M.S., Moyá, M.L., Troncoso, A.M., and García-Parrilla, M.C., Talanta, 2007, vol. 71, no. 1, p. 230. doi 10.1016/j.talanta.2006.03.050CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Provincial Key Laboratory of Oil and Gas Chemical Technology, College of Chemistry and Chemical EngineeringNortheast Petroleum UniversityDaqing, HeilongjiangChina

Personalised recommendations