Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2737–2743 | Cite as

Microwave assisted aqueous phase synthesis of benzothiazoles and benzimidazoles in the presence of Ag2O

  • B. SakramEmail author
  • S. Rambabu
  • K. Ashok
  • B. Sonyanaik
  • D. Ravi
Article

Abstract

A simple and high yielding method for synthesized benzothiazoles and benzimidazole in water under micro wave irradiation by the reaction of 2-amino thiophenol and o-phenylenediamine with various aromatic aldehydes in the presence of Ag2O. Ag2O can be recovered and reused without significant loss of activity.

Keywords

benzothiazoles benzimidazole 2-amino thiophenol o-phenylenediamine aromatic aldehydes Ag2microwave irradiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, R.G., Mitchell, J.D., Moore, D.H., Cochrane Database of Syst. Rev., 2014. doi 10.1002/14651858Google Scholar
  2. 2.
    The American Society of Health-System Pharmacists, Retrieved August 18, 2015.Google Scholar
  3. 3.
    Mylari, B.L. and Larson, E.R., J. Med. Chem., 1991, vol. 34, p. 108. doi 10.1021/jm00105a018CrossRefGoogle Scholar
  4. 4. (a)
    Mortimer, C.G., Wells, G., Crochard, J.P., et al., J. Med. Chem., 2006, vol. 49, p. 179. doi 10.1021/jm050942k.CrossRefGoogle Scholar
  5. (b).
    Aiello, S., Wells, G., Stone, E.L., et al., J. Med. Chem., 2008, vol. 51, p. 5135. doi 10.1021/jm800418zCrossRefGoogle Scholar
  6. 5. (a)
    Geng, M., Li, L., Wu, J., Ren, X., Qu, J. Med. Chem., 2012, vol. 55, p. 9146. doi 10.1021/jm3003813.CrossRefGoogle Scholar
  7. (b).
    Shah, D.I., Sharma, M., Bansal, Y., Bansal, G., and Singh, M., Eur. J. Med. Chem., 2008, vol. 43, p. 1808. doi 10.1016/j.ejmech.2007.11.008.CrossRefGoogle Scholar
  8. 6.
    Sharma, R.N., Xavier, F.P., Vasu, K.K., Chaturvedi, S.C., and Pancholi, S.S., J. Enzym. Inhibit. Med. Chem., 2009, vol. 24, p. 890. doi 10.1080/14756360802519558.CrossRefGoogle Scholar
  9. 7.
    Ogino, Y., Ohtake, N., Nagae, Y., Matsuda, K., Moriya, M., Suga, M., Ishikawa, M., Kanesaka, Y., Ito Mitobe, J., Kanno, T., Ishiara, T. A., Iwaasa, H., Ohe, T., Kanatani, A., and Fukami, T., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 5010. doi: 10.1016/j.bmcl.2008.08.018CrossRefGoogle Scholar
  10. 8.
    Ghosh, P. and Mandal, A., Catal. Commun., 2011, vol. 12, p. 744. doi 10.1039/C4RA16222FCrossRefGoogle Scholar
  11. 9.
    Hornberger, K.R., Adjabeng, G.M., Dickson, H.D., and Davis-Ward, R.G., Tetrahedron Lett., 2006, vol. 47, p. 5359. doi 10.1016/j.tetlet.2006.05.111CrossRefGoogle Scholar
  12. 10.
    Beaulieu, P.L., Haché, B., and Moos, E.V., Synthesis, 2003, vol. 11, p. 1683. Doi 10.1055/s-2003-40888CrossRefGoogle Scholar
  13. 11.
    Saha, D., Saha, A., and Ranu, B.C. Green Chem., 2009, vol. 11, p. 733. doi 10.3998/ark.5550190.0014.217CrossRefGoogle Scholar
  14. 12.
    Mirkhani, V., Moghadam, M., Tangestaninejad, S., and Kargar, H., Tetrahedron Lett., 2006, vol. 47, p. 2129. doi 10.3998/ark.5550190.0011.207CrossRefGoogle Scholar
  15. 13.
    Katla, R., Chowrasia, R., Manjari, R.S., and Domingues, N.C., RSC Adv., 2015, vol. 5, p. 41716. doi 10.1039/C4RA16222FCrossRefGoogle Scholar
  16. 14.
    Banerjee, S., Payra, S., Saha, A., and Sereda, G., Tetrahedron Lett., 2014, vol. 55, p. 5515. Doi 10.1016/j.tetlet.2014.07.123CrossRefGoogle Scholar
  17. 15.
    Paul, S., Gupta, M., and Gupta, R., Synth. Commun., 2002, vol. 32, p. 3541. doi 10.1590/S0103- 50532010000100007CrossRefGoogle Scholar
  18. 16.
    Chen, G.-F., Jia, H.-M., Zhang, L.-Y., Chen, B.-H., and Li, J.-T., Ultrason. Sonochem, 2013, vol. 20, p. 627. doi 10.1039/C4RA11877DCrossRefGoogle Scholar
  19. 17.
    Maleki, B., Salehabadi, H., and Moghaddam, M.K., Acta Chim. Slov., 2010, vol. 57, p. 741. PMID: 24061824PubMedGoogle Scholar
  20. 18.
    Riadi, Y., Mamouni, R., Azzalou, R., Haddad, M.E., Routier, S., Guillaumet, G., Laza, S., Tetrahedron Lett., 2011, vol. 52, p. 3492. doi 10.13005/ojc/310359CrossRefGoogle Scholar
  21. 19.
    Li, Y., Wang, Y.L., and Wang, J.Y., Chem. Lett., 2006, vol. 35, p. 460. doi 10.1080/17518251003709514CrossRefGoogle Scholar
  22. 20.
    Sadek, B., Al-Tabakha, M.M., and Fahelelbom, K.M.S., Molecules, 2011, vol. 16, p. 9386.CrossRefGoogle Scholar
  23. 21.
    Wei-Ye, Hu, Pei-Pei, Wang, and Song-Lin, Zhang, Synthesis, 2015, vol. 47, p. 42.Google Scholar
  24. 22.
    Weidner-Wells, M.A., Ohemeng, K.A., Nguyen, V.N., et al., Bioorg. Med. Chem. Lett., 2001, vol. 11, no. 12, p. 15452001. doi: 10.1155/2014/705973CrossRefGoogle Scholar
  25. 23.
    Chari, M.A., Shobha, D., Kenawy, E.R., Al-Deyab, S.S., Subba Reddy, B.V., and Vinu, A., Tetrahedron Lett., 2010, vol. 51, no. 39, p. 5195, doi 10.1016/j.tetlet.2010.07.132CrossRefGoogle Scholar
  26. 24.
    Chunxia Chen, Chen Chen, Bin Li, Jingwei Tao, and Jinsong Peng, Molecules, 2012, vol. 17, p. 12506.CrossRefGoogle Scholar
  27. 25.
    Heravi, M.M., Tajbakhsh, M., Ahmadi, A.N., and Mohajerani, B., Monatshefte fur Chemie, 2006, vol. 137, p. 17. doi 10.1007/s00706-005-0407-7Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • B. Sakram
    • 1
    Email author
  • S. Rambabu
    • 1
  • K. Ashok
    • 1
  • B. Sonyanaik
    • 1
  • D. Ravi
    • 1
  1. 1.Department of ChemistryOsmania UniversityHyderabadIndia

Personalised recommendations