Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2653–2659 | Cite as

Kinetics of complex formation of 5,10,15,20-tetraphenylporphyrin and 2,3,7,8,12,13,17,18-octaethylporphyrin with iron valinate, guaninate, and adeninate

  • S. V. ZaitsevaEmail author
  • S. A. Zdanovich
  • O. I. Koifman
Article
  • 21 Downloads

Abstract

The complex formation of 5,10,15,20-tetraethyl-porphyrin and 2,3,7,8,12,13,17,18-octaethylporphyrin with iron(III) valinate and iron(II) guaninate and adeninate in DMSO was studied by spectrophotometry. Kinetic parameters were estimated and a possible reaction mechanism was proposed. The nature of the macrocyclic ligand and salt were shown to affect the reaction kinetics. The complex formation was found to be hindered by shielding of the iron cation by the nitrogenous base and amino acid fragments. Quantum-chemical calculations by the PM3 method were used to obtain geometric characteristics of the reagents and reaction products. The calculation results showed that the formation of iron porphyrinates is accompanied by a decrease of planarity and an enhancement of steric strains in the complexes.

Keywords

porphyrin iron complex valine guanine adenine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ralph, D.M., Robinson, S.R., Campbell, M.S., and Bishop, G.M., Free Radic. Biol. Med., 2010, vol. 49, no. 4, p. 649. doi 10.1016/j.freeradbiomed.2010.05.023CrossRefGoogle Scholar
  2. 2.
    Paksi, Z., Jancso, A., Pacello, F., Nagy, N., Battistoni, A., and Gajda, T., J. Inorg. Biochem., 2008, vol. 102, no. 9, p. 1700. doi 10.1016/j.jinorgbio.2008.04.007CrossRefGoogle Scholar
  3. 3.
    Grazul, M. and Budzisz, E., Coord. Chem. Rev., 2009, vol. 253, nos. 21–22, p. 2588. doi 10.1016/j.ccr.2009.06.015CrossRefGoogle Scholar
  4. 4.
    Enyedy, E.A., Bognar, G.M., Nagy, N.V., Jakusch, T., Kiss, T., and Gambino, D., Polyhedron, 2014, vol. 67, p. 242. doi 10.1016/j.poly.2013.08.053CrossRefGoogle Scholar
  5. 5.
    Mamardashvili, G.M. and Berezin, B.D., Russ. J. Gen. Chem., 2000, vol. 70, no. 8, p. 1299.Google Scholar
  6. 6.
    Zhang, Z., Geng, Z.-R., Kan, X.-W., Zhao, Q., Li, Y.-Z., and Wang, Z.-L., Inorg. Chim. Acta, 2010, vol. 363, no. 8, p. 1805. doi 10.1016/j.ica.2010.02.024CrossRefGoogle Scholar
  7. 7.
    Berezin, B.D. and Mamardashvili, G.M., Russ. J. Coord. Chem., 2000, vol. 26, no. 9, p. 656.Google Scholar
  8. 8.
    Berezin, B.D., Zvezdina, S.V., and Berezin, M.B., Russ. J. Gen. Chem., 2013, vol. 83, no. 7, p. 1410. doi 10.1134/S1070363213070189CrossRefGoogle Scholar
  9. 9.
    Berezin, B.D. and Mamardashvili, G.M., Russ. J. Coord. Chem., 2000, vol. 26, no. 10, p. 748.Google Scholar
  10. 10.
    Berezin, B.D. and Mamardashvili, G.M., Russ. J. Coord. Chem., 2002, vol. 28, no. 11, p. 771. doi 10.1023/A:1021102814028CrossRefGoogle Scholar
  11. 11.
    Berezin, B.D. and Berezin, D.B., Kurs sovremennoi organicheskoi khimii (Course of Modern Organic Chemistry), Moscow Vysshaya Shkola, 2003.Google Scholar
  12. 12.
    Berezin, B.D. and Berezin, D.B., Khromofornye sistemy makrotsiklov i lineinykh molekul (Chromophoric Systems of Macrocycle and Linear Molecules), Moscow URSS, 2014.Google Scholar
  13. 13.
    Porfiriny: struktura, svoystva, sintez (Porphyrins: Structure, Properties, Synthesis), Enikolopyan, N.S., Ed., Moscow Nauka, 1985.Google Scholar
  14. 14.
    Berezin, B.D., Nurmatov, A.A., and Semeikin, A.S., Koord. Khim., 1994, vol. 20, no. 5, p. 391.Google Scholar
  15. 15.
    Berezin, B.D., Trofimenko, G.M., and Semeikin, A.S., Koord. Khim., 1995, vol. 21, no. 6, p. 499.Google Scholar
  16. 16.
    Mamardashvili, G.M. and Berezin, B.D., Russ. J. Gen. Chem., 2000, vol. 70, no. 1, p. 141.Google Scholar
  17. 17.
    Heinert, D. and Martell, A.E., J. Am. Chem. Soc., 1963, vol. 85, p. 1215.CrossRefGoogle Scholar
  18. 18.
    Fayad, N.K., Al-Noor, T.H., and Ghanim, F.H., Adv. Phys. Theor. Appl., 2012, vol. 9, p. 1.Google Scholar
  19. 19.
    Noori, K.F., Al-Noor, T.H., Mahmood, A.A., and Malih, I.K., Chem. Mat. Res., 2013, vol. 3, p. 66.Google Scholar
  20. 20.
    Weiß, R. and Venner, H., Hoppe-Seyler’s Z. Physiol. Chem., 1965, vol. 340, p. 138. doi 10.1515/bchm2.1965.340.1-2.138Google Scholar
  21. 21.
    Chojnacki, H., Kolodziejczyk, W., and Pruchnik, F., Int. J. Mol. Sci., 2001, vol. 3, p. 148. doi 10.3390/i2040148CrossRefGoogle Scholar
  22. 22.
    Mikulski, C.M., Mattucci, L., Smith, Y., Tran, T.B., and Karyannis, N.M., Inorg. Chim. Acta, 1982, vol. 66, p. L71. doi 10.1016/S0020-1693(00)85780-1Google Scholar
  23. 23.
    Beringhelli T., Freni M., Morazzoni F., Romiti P., Servida R., Spectrochim. Acta, 1981, vol. 37, no. 9, p. 763. doi 10.1016/0584-8539(81)80078-5CrossRefGoogle Scholar
  24. 24.
    Inorganic Biochemistry, Eichhorn, G.L., Ed., Amsterdam: Elsevier, 1973, vol. 2.Google Scholar
  25. 25.
    Berezin, B.D., Azizova, E.S., and Mamardashvili, G.M., Russ. J. Inorg. Chem., 2005, vol. 50, no. 10, p. 1561.Google Scholar
  26. 26.
    Brown, D.B., Helis, J.W., Walton, E.G., Hodgson, D.J., and Hatfield, W.E., Inorg. Chem., 1977, vol. 16, no. 11, p. 2675. doi 10.1021/ic50177a001CrossRefGoogle Scholar
  27. 27.
    Kitagawa, T. and Ozaki, Y., Structure Bonding, 1987, vol. 64, p. 71.CrossRefGoogle Scholar
  28. 28.
    Cheremisina, I.M., Zh. Strukt. Khim., 1978, vol. 19, no. 2, p. 336.Google Scholar
  29. 29.
    Berezin, D. B., Makrotsiklicheskii effekt i strukturnaya khimiya porfirinov (Macrocyclic Effect and Structural Chemistry of porphyrins), Moscow URSS, 2010.Google Scholar
  30. 30.
    Koifman, O.I., Mamardashvili, N.Zh., and Antipin, I.S., Sinteticheskie retseptory na osnove porfirinov i ikh kon’yugatov s kaliks[4]arenami (Synthetic Receptors on the Basis of Porphyrins and Their Conjugates with Calix [4]arenes), Moscow Nauka, 2006.Google Scholar
  31. 31.
    Hamor, M.J., Hamor, T.A., and Hoard, J., J. Am. Chem. Soc., 1964, vol. 86, no. 10, p. 1938.CrossRefGoogle Scholar
  32. 32.
    Schidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomeri, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, p. 1347. doi 10.1002/jcc. 540141112.CrossRefGoogle Scholar
  33. 33.
    Stewart, J.J.P., J. Computer-Aided Mol. Design, 1990, vol. 4, no. 1, p. 1. doi 10.1007/BF00128336.CrossRefGoogle Scholar
  34. 34.
    Fletcher, R., Methods of Optimization, New York: Wiley, 1980, p. 45.Google Scholar
  35. 35.
    Toyota, E., Miyazaki, H., Itoh, K., Sekizaki, H., and Tanizawa, K., Chem. Pharm. Bull., 1999, vol. 47, no. 1, p. 116. doi 10.1248/cpb.47.116.CrossRefGoogle Scholar
  36. 36.
    Granovsky, A.A., Gamess. http://classic.chem.msu.su/gran/gamess/index.html.Google Scholar
  37. 37.
    ChemCraft. http://www.chemcraftprog.com/index.html.Google Scholar
  38. 38.
    Comprehensive Organic Chemistry, Barton, D. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, 1st ed. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1981, vols. 1, 2, 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. V. Zaitseva
    • 1
    Email author
  • S. A. Zdanovich
    • 1
  • O. I. Koifman
    • 1
    • 2
  1. 1.Krestov Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia
  2. 2.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations