Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2616–2623 | Cite as

5-Trifluoromethylfuryl derivatives of phosphocarboxylic acids

  • E. P. Doronina
  • L. M. PevznerEmail author
  • V. A. Polukeev
  • M. L. Petrov


Methods of synthesis of trifluoromethylfuryl derivatives of phosphonocarboxylic acids are studied. By addition of diethyl hydrogen phosphite to alkyl 3-(5-trifluoromethylfur-2-yl)acrylate under the conditions of the Pudovik reaction the corresponding derivative of 3-phosphonopropionic acid was prepared. Diethyl (5-trifluoromethylfur-2-yl)methanephosphonate in presence of potassium tert-butylate reacts with ethyl acrylate to form trifluoromethylfuryl derivative of 4-phosphonobutyric or 4-phosphonopimelic acid depending on the reaction conditions. In the products of reaction of the alkyl 3-(5-trifluoromethylfur-2-yl)-3-(diethoxyphosphoryl) propionate with ethyl acrylate in the presence of potassium tert-butylate formation of trifluoromethylfuryl derivative of the 3-phosphonoadipic acid is detected. 3-(5-Trifluoromethylfur-2-yl)-3-(diethoxyphosphoryl) propionic acid and its acid chloride are synthesized. The latter compound is used for acylation of glycine to form the corresponding N-acyl derivative. It is suggested that such compounds may be transported in the cell using usual channels of transportation of the amino acids and short peptides.


trifluoromethylfurans phosphonocarboxylic acids Pudovik reaction Michael reaction acrylates acylglycine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grobelny, D., Coli, U.B., and Galardy, R.E., Biochem. J., 1985, no. 232, p. 15. doi 10.1042/bj2320015CrossRefGoogle Scholar
  2. 2.
    Manal, M., Chandrasekar, M.J.N., Priya, J.G., and Nanjan, M.J., Bioorg. Chem., 2016, vol. 67, p. 18. doi 10.1016/j.bioorg.2016.05.005CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Luo, Y-c, Hu, X-A., and Xu, P-F., Org. Lett., 2011, vol. 13, no. 9, p. 5346. doi 10.1021/ol2022092CrossRefGoogle Scholar
  4. 4.
    Grigorash, R.V., Lyalin, V.V., Alekseeva, L.A., and Yagupol’skii, L.M., Chem. Heterocycl. Compd., 1977, vol. 13, no. 12, p. 1280.CrossRefGoogle Scholar
  5. 5.
    Pevzner, L.M., Russ. J. Gen. Chem., 2004, vol. 74, no. 6, p. 860. doi 10.1023/B:RUGC0000042420.68061.09CrossRefGoogle Scholar
  6. 6.
    Pevzner, L.M., Terekhova, M.I., Ignat’ev, V.M., Petrov, E.S., and Ionin, B.I., Zh. Obshch. Khim., 1984, vol. 54, no. 9, p. 1990.Google Scholar
  7. 7.
    Pevzner, L.M. and Polukeev, V.A., Russ. J. Gen. Chem., 2015, vol. 85, no. 5, p. 2120. doi 10.1134/S1070363215090169CrossRefGoogle Scholar
  8. 8.
    Carruthers, N.I., Shireman, B.T., Tran, V.T., Wong, V.D., Jablonowski, J.A., and Wenying, C.M., USA Patent WO2010059393 A1, 2010, p. 117.Google Scholar
  9. 9.
    Korlyakova, O.V. and Likhacheva, N.V., in Biokhimiya (Biochemistry), Severin, E.S., Ed., Moscow: EOTARMedia, 2003, p. 458Google Scholar
  10. 10. Scholar
  11. 11.
    Crawford, L.J., Walker, B., and Irvine, A.E., J. Cell Commun. Signal, 2011, no. 5, p. 101. doi 10.1007/s12079-011-0121-7CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. P. Doronina
    • 1
  • L. M. Pevzner
    • 1
    Email author
  • V. A. Polukeev
    • 2
  • M. L. Petrov
    • 1
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.Institute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations