Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 12, pp 2581–2588 | Cite as

Formation of variable-composition iron(III) hydrosilicates with the сhrysotile structure

  • A. A. KrasilinEmail author
  • V. V. Panchuk
  • V. G. Semenov
  • V. V. Gusarov
Article
  • 26 Downloads

Abstract

The process of formation of iron hydrosilicates (Mg2+,Fe3+)2–3Si2O5(OH)4 was studied. It was shown that the stage of coprecipitation of magnesium and iron hydroxides in the presence of silica nanoparticles forms poorly crystallized layered Mg–Fe double hydroxides having Fe3+ ions in the octahedral sites. Hydrothermal treatment of the mixtures of coprecipitated hydroxides and silica nanoparticles gives rise to layered hydrosilicates, where Fe3+ ions occupy both the octahedral (preferentially) and tetrahedral sires. The possibility of the formation and a fairly stable existence of the variable-composition layered hydrosilicate (Mg2+,Fe3+)2–3Si2O5(OH)4 was shown to correlate with the stability range of its precursor brucite-like Mg–Fe layered double hydroxide.

Keywords

layered hydrosilicates double hydroxides hydrothermal synthesis Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pauling, L., Proc. Natl. Acad. Sci. USA, 1930, vol. 16, no. 9, p. 578.PubMedGoogle Scholar
  2. 2.
    Bates, T.F., Sand, L.B., and Mink, J.F., Science, 1950, vol. 111, no. 2889, p. 512.PubMedGoogle Scholar
  3. 3.
    Bates, T.F., Hidebrand, F.A., and Swineford, A., Am. Mineral., 1950, vol. 35, nos. 7–8, p. 463.Google Scholar
  4. 4.
    Whittaker, E.J.W., Acta Crystallogr., 1953, vol. 6, no. 8, p. 747. doi 10.1107/S0365110X53002118Google Scholar
  5. 5.
    Maser, M., Rice, R.V., and Klug, H.P., Am. Mineral., 1960, vol. 45, no. 7, p. 680.Google Scholar
  6. 6.
    Yada, K., Acta Crystallogr., 1967, vol. 23, no. 5, p. 704. doi 10.1107/S0365110X67003524Google Scholar
  7. 7.
    Devouard, B., Baronnet, A., van Tendeloo, G., and Amelinckx, S., Eur. J. Mineral., 1997, vol. 9, no. 3, p. 539. doi 10.1127/ejm/9/3/0539Google Scholar
  8. 8.
    Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., and Roveri, N., Chemistry, 2004, vol. 10, no. 12, p. 3043. doi 10.1002/chem.200305685PubMedGoogle Scholar
  9. 9.
    Alvarez-Ramnrez, F., Toledo-Antonio, J.A., Angeles-Chavez, C., Guerrero-Abreo, J.H., and López-Salinas, E., J. Phys. Chem. C, 2011, vol. 115, p. 11442. doi 10.1021/jp201941xGoogle Scholar
  10. 10.
    Smolikov, A., Vezentsev, A., Beresnev, V., Kolesnikov, D., and Solokha, A., J. Mater. Sci. Eng. A, 2013, vol. 3, no. 8, p. 523.Google Scholar
  11. 11.
    Nesterchuk, N.I., Makarova, T.A., and Fedoseev, A.D., Zapiski Vseross. Mineral. Obshch., 1966, vol. 95, no. 1, p. 75.Google Scholar
  12. 12.
    Yada, K. and Iishi, K., Am. Mineral., 1977, vol. 62, p. 958.Google Scholar
  13. 13.
    Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Glass Phys. Chem., 2004, vol. 30, no. 1, p. 51. doi 10.1023/B:GPAC.0000016397.29132.21Google Scholar
  14. 14.
    Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Glass Phys. Chem., 2005, vol. 31, no. 6, p. 797. doi 10.1007/s10720-005-0127-4Google Scholar
  15. 15.
    Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., and Toche, F., Chemistry, 2013, vol. 19, no. 17, p. 5417. doi 10.1002/chem.201204105PubMedGoogle Scholar
  16. 16.
    Saito, H., Yamai, I., and Kato, N., J. Ceram. Assoc. Jpn., 1968, vol. 76, no. 876, p. 247. doi 10.2109/jcersj1950.76.876_247Google Scholar
  17. 17.
    Yamai, I. and Saito, H., J. Cryst. Growth., 1974, vols. 24–25, p. 617. doi 10.1016/0022-0248(74)90390-XGoogle Scholar
  18. 18.
    Jancar, B. and Suvorov, D., Nanotechnology, 2006, vol. 17, no. 1, p. 25. doi 10.1088/0957-4484/17/1/005Google Scholar
  19. 19.
    Xu, J., Li, X., Zhou, W., Ding, L., Jin, Z., and Li, Y., J. Porous Mater., 2006, vol. 13, nos. 3–4, p. 275. doi 10.1007/s10934-006-8016-3Google Scholar
  20. 20.
    Sharikov, F.Yu., Korytkova, E.N., and Gusarov, V.V., Glass Phys. Chem., 2007, vol. 33, no. 5, p. 515. doi 10.1134/S108765960705015XGoogle Scholar
  21. 21.
    Bloise, A., Belluso, E., Fornero, E., Rinaudo, C., Barrese, E., and Capella, S., Microp. Mesop. Mater., 2010, vol. 132, nos. 1–2, p. 239. doi 10.1016/j.micromeso.2010.03.003Google Scholar
  22. 22.
    Krasilin, A.A., Almjasheva, O.V., and Gusarov, V.V., Inorg. Mater., 2011, vol. 47, no. 11, p. 1111. doi 10.1134/S002016851110013XGoogle Scholar
  23. 23.
    Krasilin, A.A., Suprun, A.M., and Gusarov, V.V., Russ. J. Appl. Chem., 2013, vol. 86, no. 11, p. 1633. doi 10.1134/S1070427213110013Google Scholar
  24. 24.
    Krasilin, A.A., Suprun, A.M., Nevedomsky, V.N., and Gusarov, V.V., Doklady Phys. Chem., 2015, vol. 460, no. 2, p. 42. doi 10.1134/S0012501615020049Google Scholar
  25. 25.
    Krasilin, A.A. and Gusarov, V.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 12, p. 1928. doi 10.1134/S10704272150120038Google Scholar
  26. 26.
    O’Hanley, D.S., Chernosky, J.V., and Wicks, F.J., Can. Mineral., 1989, vol. 23, no. 3, p. 483.Google Scholar
  27. 27.
    Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., and Gusarov, V.V., Russ. J. Phys. Chem., 2006, vol. 80, no. 7, p. 1021. doi 10.1134/S003602440607003XGoogle Scholar
  28. 28.
    Kusiorwski, R., Zaremba, T., and Piotrowski, J., J. Therm. Anal. Calorim., 2012, vol. 109, no. 2, p. 693. doi 10.1007/s10973-012-2222-9Google Scholar
  29. 29.
    Bloise, A., Catalano, M., Barrese, E., Gualtieri, F.A., Gandolfi, N.B., Capella, S., and Belluso, E., J. Therm. Anal. Calorim., 2016, vol. 123, no. 3, p. 2225. doi 10.1007/s10973-015-4939-8Google Scholar
  30. 30.
    Foresti, E., Hochella, M.F., Kornishi, H., Lesci, I.G., Madden, A.S., Roveri, N., and Xu, H., Adv. Funct. Mater., 2005, vol. 15, no. 6, p. 1009. doi 10.1002/adfm.200400355Google Scholar
  31. 31.
    Borghi, E., Occhiuzzi, M., Foresti, E., Lesci, I.G., and Roveri, N., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 1, p. 227. doi 10.1039/b915182fPubMedGoogle Scholar
  32. 32.
    Stroink, G., Hutt, D., Lim, D., and Dunlap, R., IEEE Trans. Magn., 1985, vol. 21, no. 5, p. 2074. doi 10.1109/TMAG.1985.1064007Google Scholar
  33. 33.
    Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Giorgio, L., and Roveri, N., Adv. Funct. Mater., 2007, vol. 17, no. 16, p. 3332. doi 10.1002/adfm.200700278Google Scholar
  34. 34.
    Kumzerov, Yu.A., Kartenko, N.F., Parfen’eva, L.S., Smirnov, I.A., Fokin, A.V., Wlosewicz, D., Misiorek, H., and Jezovski, A., Phys. Solid State, 2011, vol. 53, no. 5, p. 1099. doi 10.1134/S1063783411050167Google Scholar
  35. 35.
    Mamontov, E., Kumzerov, Yu.A., and Vakhrushev, S.B., Phys. Rev., 2005, vol. 71, p. 061502. doi 10.1103/PhysRevE.71.061502Google Scholar
  36. 36.
    Krasilin, A.A., Semenova, A.S., Kellerman, D.G., Nevedomsky, V.N., and Gusarov, V.V., Europhys. Lett., 2016, vol. 113, no.4., P. doi 10.1209/0295- 5075/113/47006Google Scholar
  37. 37.
    Nyapshaev, I.A., Shcherbin, B.O., Ankudinov, A.V., Kumzerov, Yu.A., Nevedomskiy, V.N., Krasilin, A.A., Al’myasheva, O.V., and Gusarov, V.V., Nanosistemy: Fiz. Khim. Matem., 2011, vol. 2, no. 2, p. 48.Google Scholar
  38. 38.
    Yudin, V.E., Otaigbe, J.U., Svetlichnyi, V.M., Korytkova, E.N., Almjasheva, O.V., and Gusarov, V.V., Express Polymer Lett., 2008, vol. 2, no. 7, p. 485. doi 10.3144/expresspolymlett.2008.58Google Scholar
  39. 39.
    Song, Q., Supeng, P., and Shuping, Z., J. Chin. Chem. Soc., 2013, vol. 60, no. 9, p. 1181. doi 10.1002/jccs.201200543Google Scholar
  40. 40.
    Junhong, Z., Mingbo, Z., Zhen, R., Jing, X., Mengjun, S., and Huan, P., J. Power Sources, 2015 vol. 285, p. 385. doi 10.1016/j.jpowsour.2015.03.126Google Scholar
  41. 41.
    Shaoming, Y., Long, Z., Yajun, W., Xiguang, L., Lianchi, X., and Leilei, C., J. Environ. Chem. Eng., 2015, vol. 3, no. 2, p. 752. doi 10.1016/j.jece.2015.03.023Google Scholar
  42. 42.
    Faust, G.T., Fahey, J.J., Mason, B., and Dwornik, E.J., Science, 1969, vol. 165, no. 3888, p. 59. doi 10.1126/science.165.3888.59PubMedGoogle Scholar
  43. 43.
    Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, Yu.V., Povinich, V.F., and Gusarov, V.V., Inorg. Mater., 2005, vol. 41, no. 7, p. 743. doi 10.1007/s10789-005-0202-1Google Scholar
  44. 44.
    Korytkova, E.N., Pivovarova, L.N., Drosdova, I.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2007, vol. 77, no. 10, p. 1669. doi 10.1134/S1070363207100039Google Scholar
  45. 45.
    Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., and Gusarov, V.V., Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, p. 338. doi 10.1134/S0036023607030084Google Scholar
  46. 46.
    Bloise, A., Barrese, E., and Apollaro, C., Neues Jahrb. Mineral., 2009, vol. 185, no. 3, p. 297. doi 10.1127/0077-7757/2009/0130Google Scholar
  47. 47.
    Krasilin, A.A., Suprun, A.M., Ubyivovk, E.V., and Gusarov, V.V., Mater. Lett., 2016, vol. 171, p. 68. doi 10.1016/j.matlet.2016.01.152Google Scholar
  48. 48.
    White, R.D., Bavykin, D.V., and Walsh, F.C., J. Mater. Chem. A, 2013, vol. 1, no. 3, p. 548. doi 10.1039/c2ta00257dGoogle Scholar
  49. 49.
    Korytkova, E.N. and Pivovarova, L.N., Glass Phys. Chem., 2010, vol. 36, no. 1, p. 53. doi 10.1134/S1087659610010104Google Scholar
  50. 50.
    Saito, H. and Yamai, I., J. Ceram. Assoc. Jpn., 1968, vol. 76, no. 878, p. 331. doi 10.2109/jcersj1950.76.878_331Google Scholar
  51. 51.
    Bloise, A., Belluso, E., Barrese, E., Miriello, D., and Apollaro, C., Cryst. Res. Technol., 2009, vol. 44, no. 6, p. 590. doi 10.1002/crat.200900135Google Scholar
  52. 52.
    Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., Maslennikova, T.P., and Gusarov, V.V., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 1, p. 44. doi 10.1134/S0036024410010097Google Scholar
  53. 53.
    Sarvaramini, A. and Larachi, F., J. Phys. Chem. C, 2011, vol. 115, no. 14, p. 6841. doi 10.1021/jp2005309Google Scholar
  54. 54.
    Blaauw, C., Stroink, G., and Leiper, W., Can. Mineral., 1979, vol. 17, p. 713.Google Scholar
  55. 55.
    Deriu, A., Ferraris, G., and Belluso, E., Phys. Chem. Miner., 1994, vol. 21, no. 4, p. 222. doi 10.1007/BF00202135Google Scholar
  56. 56.
    Bulatov, F.M., Georesursy, 2012, no. 6, issue 48, p. 3.Google Scholar
  57. 57.
    Ristic, M., Czaku-Nagy, I., Music, S., and Vyrtes, A., J. Mol. Struct., 2011, vol. 993, nos. 1–3, p. 120. doi 10.1016/j.molstruc.2010.10.005Google Scholar
  58. 58.
    Korytkova, E.N., Pivovarova, L.N., and Gusarov, V.V., Geochem. Int., 2007, vol. 45, no. 8, p. 825. doi 10.1134/S0016702907080083Google Scholar
  59. 59.
    Rusakov, V.S., Kotelnikova, A.A., and Bychkov, A.M., Glass Phis. Chem., 1999, vol. 25, no. 4, p. 352.Google Scholar
  60. 60.
    Gouveia, D.X., Ferreira, O.P., Filho, A.G.S., da Silva, M.G., de Paiva, J.A.C., Alves, O.L., and Filho, J.M., J. Mater. Sci., 2007, vol. 42, no. 2, p. 534. doi 10.1007/s10853-006-1143-zGoogle Scholar
  61. 61.
    Cavani, F., Trifirò, F., and Vaccari, A., Catal. Today, 1991, vol. 11, no. 2, p. 173. doi 10.1016/0920-5861(91) 80068-KGoogle Scholar
  62. 62.
    Bancroft, G., Maddock, A., and Burns, R., Geochim. Cosmochim. Acta, 1967, vol. 31, no. 11, p. 2219. doi 10.1016/0016-7037(67)90062-2Google Scholar
  63. 63.
    Rusakov, V.S., Izv. Akad. Nauk Ser. Fiz., 1999, no. 7, p. 1389.Google Scholar
  64. 64.
    Rusakov, V.S. and Kadyrzhanov, K.K., Hyperfine Interact., 2005, vol. 164, p. 87. doi 10.1007/s10751- 006-9236-2Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Krasilin
    • 1
    • 2
    Email author
  • V. V. Panchuk
    • 3
  • V. G. Semenov
    • 3
  • V. V. Gusarov
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations