Advertisement

Russian Journal of General Chemistry

, Volume 86, Issue 6, pp 1215–1220 | Cite as

Quantum-chemical study of ytterbium fluorides and of complex F2YbF2CeF2

  • S. G. Semenov
  • M. E. Bedrina
  • A. V. Titov
Article

Abstract

The structural parameters of the (2Σ+//Cv )-YbF, (1A1//C2v )-YbF2, (2A 2 //D3h )-YbF3, (1Ag//D2h )-YbF2Yb, (1Ag//C2h )-FYbF2YbF, (1A1//C2v )-FYbF2YbF, (1A1//C2v )-YbF2YbF2, (3B3u //D2h )-F2YbF2YbF2, (2A′//C s )-FYbF2YbF2, and (3B2//С2v )-F2YbF2CeF2 molecules have been determined. Disproportionation of ytterbium monofluoride (2YbF → YbF2 + Yb + 0.46 eV) is less exothermic than dimerization (2YbF → YbF2Yb + 2.10 eV). The bond energy of the ytterbium difluoride molecules in the trans dimer (2.93 eV) exceeds those in the cis dimer (2.86 eV) and the coaxial dimer (1.66 eV). Ytterbium trifluoride dimerizes exothermically (2.95 eV) without spin pairing. The dipole and quadrupole moments of the molecules as well as the charges and spin populations of the atoms and the valence electron configurations of the lanthanides have been calculated.

Keywords

ytterbium fluorides chlorides dimerization dipole and quadrupole moments quantum-chemical calculations pseudopotential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrow, R.F. and Chojnicki, A.H., J. Chem. Soc., Faraday Trans. 2, 1975, vol. 71, no. 4, p. 728. DOI: 10.1039/f29757100728.CrossRefGoogle Scholar
  2. 2.
    Van Zee, R.J., Seely, M.L., DeVore, T.C., and Weltner, W., Jr., J. Phys. Chem., 1978, vol. 82, no. 10, p. 1192. DOI: 10.1021/j100499a022.CrossRefGoogle Scholar
  3. 3.
    Sauer, B.E., Wang, J., and Hinds, E.A., J. Chem. Phys., 1996, vol. 105, no. 17, p. 7412. DOI: 10.1063/1.472569.CrossRefGoogle Scholar
  4. 4.
    Titov, A.V., Mosyagin, N.S., and Ezhov, V.F., Phys. Rev. Lett., 1996, vol. 77, no. 27, p. 5346. DOI: 10.1103/PhysRevLett.77.5346.CrossRefGoogle Scholar
  5. 5.
    Quiney, H.M., Skaane, H., and Grant, I.P., Phys. J. Phys. B, 1998, vol. 31, no. 3, p. L85.CrossRefGoogle Scholar
  6. 6.
    Mosyagin, N.S., Kozlov, M.G., and Titov, A.V., J. Phys. B, 1998, vol. 31, no. 19, p. L763.CrossRefGoogle Scholar
  7. 7.
    Dickinson, C.S., Coxon, J.A., Walker, N.R., and Gerry, M.C.L., J. Chem. Phys., 2001, vol. 115, no. 15, p. 6979. DOI: 10.1063/1.1404146.CrossRefGoogle Scholar
  8. 8.
    Ma, T., Butler, C., Brown, J.M., Linton, C., and Steimle, T.C., J. Phys. Chem. A, 2009, vol. 113, no. 28, p. 8038. DOI: 10.1021/jp903596g.CrossRefGoogle Scholar
  9. 9.
    Steimle, T.C., Ma, T., and Linton, C., J. Chem. Phys., 2007, vol. 127, no. 23, p. 234316. DOI: 10.1063/1.2820788CrossRefGoogle Scholar
  10. 9a.
    Steimle, T.C., Ma, T., and Linton, C., J. Chem. Phys., 2008, vol. 128, no. 20, p. 209903. DOI: 10.1063/1.2920485CrossRefGoogle Scholar
  11. 9b.
    Steimle, T.C., Ma, T., and Linton, C., J. Chem. Phys., 2012, vol. 137, no. 10, p. 109901. DOI: 10.1063/1.4752243.CrossRefGoogle Scholar
  12. 10.
    Wang, S.G. and Schwarz, W.H.E., J. Phys. Chem., 1995, vol. 99, no. 30, p. 11687.CrossRefGoogle Scholar
  13. 11.
    Glassman, Z., Mawhorter, R., Grabow, J.-U., Le, A., and Steimle, T.C., J. Mol. Spectr., 2014, vol. 300, no. 1, p. 7. DOI: 10.1016/jjms.2014.02.003.CrossRefGoogle Scholar
  14. 12.
    Smallman, I.J., Wang, F., Steimle, T.C., Tarbutt, M.R., and Hinds, E.A., J. Mol. Spectr., 2014, vol. 300, no. 1, p. 3. DOI: 10.1016/jjms.2014.02.006.CrossRefGoogle Scholar
  15. 13.
    Hall, H.T. and Merrill, L., Inorg. Chem., 1963, vol. 2, no. 3, p. 618. DOI: 10.1021/ic50007a048CrossRefGoogle Scholar
  16. 13a.
    Mc-Whan, D.B. and Schmidt, P.H., Phys. Rev., 1969, vol. 177, no. 3, p. 1063. DOI: 10.1103/PhysRev.177.1063.CrossRefGoogle Scholar
  17. 14.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. DOI: 10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
  18. 14a.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1997, vol. 78, no. 7, p. 1396. DOI: 10.1103/PhysRevLett.78.1396.CrossRefGoogle Scholar
  19. 15.
    Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, p. 6158. DOI: 10.1063/1.478522.CrossRefGoogle Scholar
  20. 16.
    Dolg, M., Stoll, H., Savin, A., and Preuss, H., Theor. Chim. Acta, 1989, vol. 75, no. 3, p. 173. DOI: 10.1007/BF00528565CrossRefGoogle Scholar
  21. 16a.
    Dolg, M., Stoll, H., and Preuss, H., Chem. Phys., 1992, vol. 165, no. 1, p. 21; J. Chem. Phys., 1989, vol. 90, no. 3, p. 1730. DOI: 10.1063/1.456066CrossRefGoogle Scholar
  22. 16b.
    Cao, X. and Dolg, M., J. Chem. Phys., 2001, vol. 115, no. 16, p. 7348. DOI: 10.1063/1.1406535.CrossRefGoogle Scholar
  23. 17.
    McWeeny, R., J. Chem. Phys., 1951, vol. 19, no. 12, p. 1614. DOI: 10.1063/1.1748146.CrossRefGoogle Scholar
  24. 17a.
    Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, no. 10, p. 1833. DOI: 10.1063/1.1740588CrossRefGoogle Scholar
  25. 18.
    Reed, A.E., Weinstock, R.B., and Weinhold, F., J. Chem. Phys., 1985, vol. 83, no. 2, p. 735. DOI: 10.1063/1.449486.CrossRefGoogle Scholar
  26. 19.
    Moran, D., Simmonett, A.C., Leach, F.E., Allen, W.D., Schleyer, Pv.R., and Schaefer, H.F., J. Am. Chem. Soc., 2006, vol. 128, no. 29, p. 9342. DOI: 10.1021/ja0630285.CrossRefGoogle Scholar
  27. 20.
    Kaiser, E.W., Falconer, W.E., and Klemperer, W., J. Chem. Phys., 1972, vol. 56, no. 11, p. 5392. DOI: 10.1063/1.1677050.CrossRefGoogle Scholar
  28. 21.
    Hauge, R.H., Hastie, J.W., and Margrave, J.L., J. Less- Common Met., 1971, vol. 23, no. 4, p. 359. DOI: 10.1016/0022-5088(71)90045-2.CrossRefGoogle Scholar
  29. 22.
    Krasnov, K.S., Filippenko, N.V., Bobkova, V.A., Lebedeva, N.L., Morozov, E.V., Ustinova, T.I., and Romanova, G.A., Molekulyarnye postoyannye neorgani cheskikh soedinenii (Molecular Constants of Inorganic Compounds), Leningrad Khimiya, 1979.Google Scholar
  30. 23.
    Landau, L.D. and Lifshitz, E.M., Teoriya polya (Field Theory), Moscow Nauka, 1967.Google Scholar
  31. 24.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Rev. C.01, D.01, Wallingford Gaussian, 2010, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. G. Semenov
    • 1
    • 2
  • M. E. Bedrina
    • 1
  • A. V. Titov
    • 1
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Konstantinov Petersburg Nuclear Physics InstituteNational Research Center “Kurchatov Institute,” Orlova RoshchaGatchina, Leningrad oblastRussia

Personalised recommendations