Skip to main content
Log in

Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Energy model of formation of multiwall nanoscrolls from thin layers has been proposed. The three major factors favoring the scrolling are dimensional mismatch of the crystal lattices forming the bilayer, difference of the surface energy at the bilayer sides, and the interaction between the bilayers. Optimal cross-section geometry of the finite-length nanoscrolls with chrysotile structure has been simulated. Effects of the Young’s modulus, specific surface energy, and adhesion energy on the nanoscroll morphology have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature, 1992, vol. 360, no. 6403, p. 444. DOI: 10.1038/360444a0.

    Article  CAS  Google Scholar 

  2. Volkov, V.L., Zakharova, G.S., and Kuznetsov, M.V., Russ. J. Inorg. Chem., 2004, vol. 49, no. 7, p. 1068.

    Google Scholar 

  3. Grigor’eva, A.V., Anikina, A.V., Tarasov, A.B., Gudilin, E.A., Knot’ko, A.V., Volkov, V.V., Dembo, K.A., and Tret’yakov, Yu.D., Doklady Chem., 2006, vol. 410, no. 2, p. 165. DOI: 10.1134/S0012500806100016.

    Article  Google Scholar 

  4. Semenenko, D.A., Itkis, D.M., Kulova, T.L., Yashuk, T.S., Skundin, A.M., Goodilin, E.A., and Tretyakov, Y.D., Electrochim. Acta, 2012, vol. 63, p. 329. DOI: 10.1016/jelectacta.2011.12.116.

    Article  CAS  Google Scholar 

  5. Bates, T.F., Sand, L.B., and Mink, J.F., Science, 1950, vol. 111, no. 2889, p. 512.

    Article  CAS  Google Scholar 

  6. Korytkova, E.N., Maslov, A.V, Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Glass Physics Chem., 2004, vol. 30, no. 1, p. 51. DOI: 10.1023/B:GPAC.0000016397. 29132.21.

    Article  CAS  Google Scholar 

  7. Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., and Roveri, N., Chemistry, 2004, vol. 10, no. 12, p. 3043. DOI: 10.1002/chem.200305685.

    Article  CAS  Google Scholar 

  8. Jancar, B. and Suvorov, D., Nanotechnology, 2006, vol. 17, no. 1, p. 25. DOI: 10.1088/0957-4484/17/1/005.

    Article  CAS  Google Scholar 

  9. Krasilin, A.A., Almjasheva, O.V., and Gusarov, V.V., Inorg. Mater., 2011, vol. 47, no. 11, p. 1111. DOI: 10.1134/S002016851110013X.

    Article  CAS  Google Scholar 

  10. Bates, T.F., Hidebrand, F.A., and Swineford, A., Am. Mineral., 1950, vol. 35, nos. 7–8, p. 463.

    CAS  Google Scholar 

  11. Singh, B. and Mackinnon, I.D.R., Clays Clay Miner., 1996, vol. 44, no. 6, p. 825.

    Article  CAS  Google Scholar 

  12. White, R.D., Bavykin, D.V, and Walsh, F.C., J. Phys. Chem. (C), 2012, vol. 116, no. 15, p. 8824. DOI: 10.1021/jp300068t.

    CAS  Google Scholar 

  13. White, R.D., Bavykin, D.V., and Walsh, F.C., Nanotechnology, 2012, vol. 23, no. 6, p. 065705. DOI: 10.1088/0957-4484/23/6/065705.

    Article  Google Scholar 

  14. Yang, H., Wang, C., and Su, Z., Chem. Mater., 2008, vol. 20, no. 13, p. 4484. DOI: 10.1021/cm8001546.

    Article  CAS  Google Scholar 

  15. Levard, C., Rose, J., Thill, A., Masion, A., Doelsch, E., Maillet, P., Spalla, O., Olivi, L., Cognigni, A., Ziarelli, F., and Bottero, J.-Y., Chem. Mater., 2010, vol. 22, no. 8, p. 2466. DOI: 10.1021/cm902883p.

    Article  CAS  Google Scholar 

  16. Tenne, R. and Rao, C.N.R., Philos. Trans. (A), 2004, vol. 362, no. 1823, p. 2099. DOI: 10.1098/rsta.2004.1431.

    Article  CAS  Google Scholar 

  17. Tenne, R., Nat. Nanotechnol., 2006, vol. 1, no. 2, p. 103. DOI: 10.1038/nnano.2006.62.

    Article  CAS  Google Scholar 

  18. Rao, C.N.R. and Govindaraj, A., Adv. Mater., 2009, vol. 21, no. 42, p. 4208. DOI: 10.1002/adma.200803720.

    Article  CAS  Google Scholar 

  19. Radovsky, G., Popovitz-Biro, R., and Tenne, R., Chem. Mater., 2014, vol. 26, no. 12, p. 3757. DOI: 10.1021/cm501316g.

    Article  CAS  Google Scholar 

  20. Prinz, V.Y., Microelectron. Eng., 2003, vol. 69, nos. 2–4, p. 466. DOI: 10.1016/S0167-9317(03)00336-8.

    Article  CAS  Google Scholar 

  21. Gulina, L.B. and Tolstoy, V.P., Russ. J. Gen. Chem., 2014, vol. 84, no. 8, p. 1472. DOI: 10.1134/S1070363214080039.

    Article  CAS  Google Scholar 

  22. Tolstoy, V.P. and Gulina, L.B., Langmuir, 2014, vol. 30, no. 28, p. 8366. DOI: 10.1021/la501204k.

    Article  CAS  Google Scholar 

  23. Krasilin, A.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 12, p. 2359. DOI: 10.1134/S1070363214120019.

    Article  CAS  Google Scholar 

  24. Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I.G., and Sabatino, P., J. Mater. Res., 2006, vol. 21, no. 11, p. 2711. DOI: 10.1557/jmr.2006.0359.

    Article  CAS  Google Scholar 

  25. Rusanov, A.I., Surf. Sci. Rep., 2014, vol. 69, no. 4, p. 296. DOI: 10.1016/jsurfrep.2014.08.003.

    Article  CAS  Google Scholar 

  26. Lourenço, M.P., de Oliveira, C., Oliveira, A.F., Guimarães, L., and Duarte, H.A., J. Phys. Chem. C, 2012, vol. 116, no. 17, p. 9405. DOI: 10.1021/jp301048p.

    Article  Google Scholar 

  27. Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Lesci, I.G., and Roveri, N., Adv. Funct. Mater., 2007, vol. 17, no. 16, p. 3332. DOI: 10.1002/adfm.200700278.

    Article  CAS  Google Scholar 

  28. Nyapshaev, I.A., Shcherbin, B.O., Ankudinov, A.V., Kumzerov, Yu.A., Nevedomskii, V.N., Krasilin, A.A., Al’myasheva, O.V., and Gusarov, V.V., Nanosistemy: Fiz., Kim., Matem., 2011, vol. 2, no. 2, p. 48.

    Google Scholar 

  29. Cressey, B.A. and Whittaker, E.J.W., Mineral. Mag., 1993, vol. 57, no. 389, p. 729. DOI: 10.1180/minmag.1993.057.389.17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasilin.

Additional information

Original Russian Text © A.A. Krasilin, V.V. Gusarov, 2015, published in Zhurnal Obshchei Khimii, 2015, Vol. 85, No. 10, pp. 1605–1608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasilin, A.A., Gusarov, V.V. Energy model of bilayer nanoplate scrolling: Formation of chrysotile nanoscroll. Russ J Gen Chem 85, 2238–2241 (2015). https://doi.org/10.1134/S1070363215100047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215100047

Keywords

Navigation