Russian Journal of General Chemistry

, Volume 85, Issue 5, pp 1252–1259 | Cite as

Plasma chemical etching of high-aspect-ratio silicon micro- and nanostructures

  • I. I. Amirov
Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)


High-aspect-ratio (HAR) silicon etching of micro-and nanostructures in a time-multiplexed deep etching process (Bosch process) is reviewed, including applications, different technological methods, critical challenges, and main principles of the technologies. HAR silicon etching is an application associated primarily with micro- and nanostructures. This potentially large-scale application requires HAR etching with a high throughput and controllable profile and surface properties. The most significant effects like RIE lag, bowing, stop effect, and profile shape dependence are discussed.


Trench Passivation Film Etching Process Fluorocarbon Silicon Etching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Material Processing, Hoboken, NJ: Wiley, 2005, 2nd ed., p. 493.CrossRefGoogle Scholar
  2. 2.
    Shamiryan, D., Redolfi, A., and Boullart, W., Microelectron. Eng., 2009, vol. 86. pp. 96–98.CrossRefGoogle Scholar
  3. 3.
    Zhou, H., Ji, X., Srinivasan, S., He, J., et al., Solid State Technol., 2013, June, pp. 14–18.Google Scholar
  4. 4.
    Lill, T. and Joubert, O., Science, 2008, vol. 319, p. 1050.CrossRefGoogle Scholar
  5. 5.
    Laemer, F. and Schilp, A., US Patent 5501893, 1994.Google Scholar
  6. 6.
    Chung, C. K., Lu, H. C., and Jaw, T. H., Microsyst. Technol., 2000, vol. 6, pp. 106–108.CrossRefGoogle Scholar
  7. 7.
    Laermer, F. and Urban, A., Microelectron. Eng., 2003, vols. 67–68, pp. 349–55.CrossRefGoogle Scholar
  8. 8.
    Fu, L., Miao, J. M., Li, X. X., and Lin, R. M., Appl. Surf. Sci., 2001, vol. 177, pp. 78–84.CrossRefGoogle Scholar
  9. 9.
    McAuley, S. A., Ashraf, H., Atabo, L., Chambers, A., et al., J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 2769–2774.CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., Yan, G., Fan, J., Zhou, J., et al., J. Micromech. Microeng., 2005, vol. 15, pp. 636–642.CrossRefGoogle Scholar
  11. 11.
    Bertz, A., Kuchler, M, Knofler, R., and Gessner, T., Sensors Actuators, 2002, vols. A 97–98, pp. 691–701.CrossRefGoogle Scholar
  12. 12.
    Wang, X., Zeng, W., Russo, O.L., and Eisenbraun, E., J. Vac. Sci. Technol. B, 2007, vol. 25, pp. 1376–1381.CrossRefGoogle Scholar
  13. 13.
    Sarajlic, E., de Boer, M.J., Jansen, H.V., Arnal, N., et al., Nanotechnology, 2004, no. 10, pp. 34–40.Google Scholar
  14. 14.
    Hosomi, K., Kikawa, T., Goto, S., Yamada, H., et al., J. Vac. Sci. Technol., 2006, vol. B24, pp. 1226–1229.CrossRefGoogle Scholar
  15. 15.
    Hanein, Y, Schabmueller, C. G. J., Holman, G., Lucke, P., et al., J. Micromech. Microeng.., 2003, vol. 13, pp. S91–S95.CrossRefGoogle Scholar
  16. 16.
    Bucaro, M. A., Vasquez, Y, Hatton, B.D., and Aizenberg, J., ACSnano, 2012, vol. 6, pp. 6222–6230.Google Scholar
  17. 17.
    Yu, R., Lin, Q., Leung, S-F., and Fan, Z., Nano Energy, 2012, vol. 1, pp. 57–72.CrossRefGoogle Scholar
  18. 18.
    Topol, A.W., La Tulipe, D.S., Shi Ir.L., et al., IBM J. Res. Dev., 2005, vol. 49, pp. 1029–1036.Google Scholar
  19. 19.
    Knickerbocker, J.U., Andry, P.S., Buchwalter, L.P., Deutsch A., et al., IBM J. Res. Dev., 2005, vol. 49, pp. 725–753.CrossRefGoogle Scholar
  20. 20.
    Abdolvand, R. and Ayazi, F., Sensors Actuators A, 2008, vol. 144, pp. 109–116.CrossRefGoogle Scholar
  21. 21.
    Ohara, J., Takeuchi, Y., and Sato, K., J. Micromech. Microeng., 2009, vol. 19, p. 095022.CrossRefGoogle Scholar
  22. 22.
    Rangelow, I. W., J. Vac. Sci. Technol. A, 2003, vol. 21, pp. 1550–1562.CrossRefGoogle Scholar
  23. 23.
    Wu, B., Kumar, A., and Pamarthy, S., J. Appl. Phys., 2010, vol. 108, p. 051101.CrossRefGoogle Scholar
  24. 24.
    Plasma Processing for VLSI, Einspruch, N.G. and Brown, D.M., Eds., New York: Academic, 1985, 1st ed.Google Scholar
  25. 25.
    Pinto, R., Ramanathan, K.V., and Babu, R.S., J. Electrochem. Soc., 1987, vol. 134, pp. 165–175.CrossRefGoogle Scholar
  26. 26.
    Coburn, J.W., J. Vac. Sci. Technol. A, 1994, vol. 12, pp. 1417–1424.CrossRefGoogle Scholar
  27. 27.
    Oehrlein, G.S., Surf. Sci., 1997, vol. 386, pp. 222–230.CrossRefGoogle Scholar
  28. 28.
    Chang, P. and Coburn, J. W., J. Vac. Sci. Technol. A, 2003, vol. 21, pp. S145–S151.CrossRefGoogle Scholar
  29. 29.
    Cooke, M.J. and Hassali, G., Plasma Sources Sci. Technol., 2002, vol. 11, pp. A74–A79.CrossRefGoogle Scholar
  30. 30.
    Amirov, I.I., Izyumov, M.O., Morozov, O.V., Kal’nov, V.A., et al., Mikrosistem. Tekh., 2004, no. 12, pp. 15–18Google Scholar
  31. 31.
    Zhou, R., Zang, H., Hao, Y., and Wang, Y., J. Micromech. Microeng., 2004, vol. 14, pp. 851–858.CrossRefGoogle Scholar
  32. 32.
    Shumilov, A.S. and Amirov, I.I., Mikroelektronika, 2007, vol. 36, pp. 295–305.Google Scholar
  33. 33.
    Blauw, M.A., Zijlstra, T., and van der Drifta, E., J. Vac. Sci. Technol. B, 2001, vol. 19, p. 2930.CrossRefGoogle Scholar
  34. 34.
    Blauw, M.A., Craciun, G., Sloof, W.G., French, P.J., and van der Drift, E., J. Vac. Sci. Technol. B., 2002, vol. 20, pp. 3106–3110.CrossRefGoogle Scholar
  35. 35.
    Amirov, I. I. and Alov, N. V., Khim. Vys. Energ., 2006, vol. 36, pp. 35–39.Google Scholar
  36. 36.
    Volland, B.E. and Rangelow, I.W., Microelectron. Eng., 2003, vols. 67–68, pp. 338–348.CrossRefGoogle Scholar
  37. 37.
    Kokkorisa, G., Boudouvis, A.G., and Gogolides, E., J. Vac. Sci. Technol. A, 2006, vol. 24, pp. 2008–2012.CrossRefGoogle Scholar
  38. 38.
    Amirov, I.I., Morozov, O.V., and Izyumov, M.O., Trudy 4 Mezhdunarodnogo simposiuma po teoreticheskoi i prikladnoi plazmokhimii (Proc. 4 Int. Symp. on Theoretical and Applied Plasma Chemisty), Ivanovo, 2005, vol. 2, pp. 653–656.Google Scholar
  39. 39.
    Slovetskii, D.I., in Khimiya plazmy (Plasma Chemistry), Moscow: Energoatomizdat, 1990, pp. 156–212.Google Scholar
  40. 40.
    Takahashi, K. and Tachibana, K., J. Appl. Phys., 2001, vol. 89, pp. 893–899.CrossRefGoogle Scholar
  41. 41.
    Kimura, Y, Coburn, J.W., and Graves, D.B., J. Vac. Sci. Technol., 2004, vol. A22, pp. 2508–2516.CrossRefGoogle Scholar
  42. 42.
    Capps, N. E., Mackie, N. M., and Fisher, E.R., J. Appl. Phys., 1998, vol. 84, pp. 4736–4743.CrossRefGoogle Scholar
  43. 43.
    Yeom, J., Wu, Y., Selby, J.C., and Shannon, M.A., J. Vac. Sci. Technol. B, 2005, vol. 23, pp. 2319–2329.CrossRefGoogle Scholar
  44. 44.
    Owen, K.J., van der Elzen, B., Peterson, R.L., and Najafi, K., Proc. 25th IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2012), Paris, France, January 29–February 2, 2012, pp. 251–254.CrossRefGoogle Scholar
  45. 45.
    Gomez, S., Belen, R.J., Kiehlbauch, M., and Aydil, E.S., J. Vac. Sci. Technol. A, 2004, vol. 22, p. 6064.CrossRefGoogle Scholar
  46. 46.
    Jansen, H.V., de Boer, M.J., Unnikrishnan, S., Louwerse, M.C., and Elwenspoek, M., J. Micromech. Microeng., 2009, vol. 19, p. 033001.CrossRefGoogle Scholar
  47. 47.
    Jansen, H.V, de Boer, M. J, Ma, K., Giron’es, M., et al., J. Micromech. Microeng., 2010, vol. 20, p. 075027.CrossRefGoogle Scholar
  48. 48.
    Saraf, M., Goeckner, B., Goodlin, K., Kirmse, L., et al., Appl. Phys. Lett., 2011, vol. 98, p. 161502.CrossRefGoogle Scholar
  49. 49.
    Ohiwa, T., Kajima, A., Sekine, M., Sakai, I., and Yonemoto, S., Jpn. J. Appl. Phys., 1998, vol. 37, pp. 5060–5063.CrossRefGoogle Scholar
  50. 50.
    Shimmura, T., Suzuki, Y., Soda, S., Samukawa, S., et al., J. Vac. Sci. Technol. A, 2004, vol. 22, pp. 433–436.CrossRefGoogle Scholar
  51. 51.
    Ohtake, H., Jinnai, B., Suzuki, Y, Soda, S., et al., J. Vac. Sci. Technol. A., 2006, vol. 24, pp. 2172–2175.CrossRefGoogle Scholar
  52. 52.
    Shumilov, S.A., Amirov, I.I., and Lukichev, V.F., Mikroelektronika, 2009, vol. 38, pp. 428–435.Google Scholar
  53. 53.
    Kim, B.S., Shin, S., Shin, S.J., Kim, K.M., and Cho, H.H., Nanoscale Res. Lett., 2011, vol. 6, pp. 333–339.CrossRefGoogle Scholar
  54. 54.
    Jeong, H.E. and Suh, K.Y., Nano Today, 2009, no. 4, pp. 335–346.Google Scholar
  55. 55.
    Kiihamaki, J. and Franssila, S., J. Vac. Sci. Technol. A, 1999, vol. 17, pp. 2280–2285.CrossRefGoogle Scholar
  56. 56.
    Chung, C-K., J. Micromech. Microeng.., 2004, vol. 14, pp. 656–662.CrossRefGoogle Scholar
  57. 57.
    Coburn, J.W. and Winters, H. F., Appl. Phys. Lett., 1989, vol. 55, pp. 2730–2732.CrossRefGoogle Scholar
  58. 58.
    Morozov, O.V. and Amirov, I. I., Mikroelektronika, 2007, vol. 36, pp. 306–315.Google Scholar
  59. 59.
    Tan, Y., Zhou, R., Zhang, H., Lu, G., and Li, Z., J. Micromech. Microeng., 2006, vol. 16, pp. 2570–2579.CrossRefGoogle Scholar
  60. 60.
    Lai, S. L., Johnson, D., and Westerman, R., J. Vac. Sci. Technol. A, 2006, vol. 24, pp. 1283–1288.CrossRefGoogle Scholar
  61. 61.
    Amirov, I.I. and Alov, N.V., Khim. Vys. Energ., 2008, vol. 42, pp. 164–168.Google Scholar
  62. 62.
    Amirov, I.I. and Shumilov, A.S., Khim. Vys. Energ., 2008, vol. 42, p. 446.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Yaroslavl Branch, Physical Technological Institute Federal State Budgetary EnterpriseRussian Academy of SciencesYaroslavlRussia

Personalised recommendations