Advertisement

Russian Journal of General Chemistry

, Volume 85, Issue 4, pp 889–893 | Cite as

Quantum chemical study Ca@C60 and Sc+@C60 endo complexes in the gas phase and pyridine

  • S. G. Semenov
  • M. V. MakarovaEmail author
Article

Abstract

DFT (U)PBE0/cc-pVDZ calculations were carried out to determine the structural parameters of the endo complexes Ca@C60 and Sc+@C60 in the gas phase and in pyridine. The (3 A 1//C 3v )-Ca@C60 and (3 A 1//C 3v )-Sc+@C60 triplets are higher in energy than the (1 A 1//C 2v )-Ca@C60 and (1 A 1//C 2v )-Sc+@C60 singlets by 0.21 and 2.61 kcal/mol in the gas and by 0.30 and 2.67 kcal/mol in pyridine. The dipole moments of the zwitter ions (1 A 1//C 2v )- and (3 A 1//C 3v )-Ca@C60 are 0.86 and 0.99 D (1.44 and 1.77 D in pyridine). The β decay 45Ca → 45Sc+ is accompanied by population of the 3 d orbital of the endo atom and strengthening of its bond with carbon. The 1 A′//C s , 3 A 1//C 2v , and 3 A 1//C 5v electronic states correspond to low (not higher than 0.54 kcal/mol) barrier of calcium migration inside the cavity. The delocalization of the endo atom provides a highly symmetric mixed state of the fluctuating endo complex. The Stone-Wales (1 A 1//C 2v )-(Ca, Sc+)@C60 rearrangement increases the energy of the endo complex by 9.9 (Ca) and 3.1 kcal/mol (Sc+).

Keywords

fullerene endo complexes Ca@C60 Sc+@C60 β decay solvent effects Stone-Wales rearrangement DFT method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, L.S., Alford, J.M., Chai, Y., Diener, M., Zhang, J., McClure, S.M., Guo, T., Scuseria, G.E., and Smalley, R.E., Chem. Phys. Lett., 1993, vol. 207, nos. 4–6, p. 354. DOI: 0.1016/0009-2614(93)89013-8.CrossRefGoogle Scholar
  2. 2.
    Chang, A.H.H., Ermler, W.C., and Pitzer, R.M., J. Chem. Phys., 1991, vol. 94, no. 7, p. 5004. DOI: 10.1063/1.460535.CrossRefGoogle Scholar
  3. 3.
    Saito, S. and Oshiyama, A., Solid State Commun., 1992, vol. 83, no. 2, p. 107. DOI: 10.1016/0038-1098(92)90885-D.CrossRefGoogle Scholar
  4. 4.
    Lu, J., Zhang, X., and Zhao, X., Solid State Commun., 1999, vol. 110, no. 10, p. 565. DOI: 10.1016/S0038-1098(99)00098-8.CrossRefGoogle Scholar
  5. 5.
    Jalbout, A.F., Roy, A.K., Leon, A. de, and Jimenez-Fabian, I., J. Mol. Struct. (THEOCHEM), 2008, vol. 858, nos. 1–3, p. 39. DOI: 10.1016.j.theochem.2008.02.026.CrossRefGoogle Scholar
  6. 6.
    Stone, A.J. and Wales, D.J., Chem. Phys. Lett., 1986, vol. 128, nos. 5–6, p. 501. DOI: 10.1016/0009-2614(86)80661-3.CrossRefGoogle Scholar
  7. 7.
    Bettinger, H.F., Yakobson, B.I., and Scuseria, G.E., J. Am. Chem. Soc., 2003, vol. 125, no. 18, p. 5572. DOI: 1021/ja0288744.CrossRefGoogle Scholar
  8. 8.
    Tomasi, J. and Persico, M., Chem. Rev., 1994, vol. 94, no. 7, p. 2027. DOI: 10.1021/cr00031a013.CrossRefGoogle Scholar
  9. 9.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, no. 8, p. 2999. DOI: 10.1021/cr9904009.CrossRefGoogle Scholar
  10. 10.
    Semenov, S.G. and Makarova, M.V., Opt. Spektrosk., 2015, vol. 118, no. 1, p. 50; DOI: 10.7868/S0030403415010225.CrossRefGoogle Scholar
  11. 11.
    Reed, A.E., Weinstock, R.B., and Weinhold, F., J. Chem. Phys., 1985, vol. 83, no. 2, p. 735. DOI: 10.1063/1.449486.CrossRefGoogle Scholar
  12. 12.
    Glendening, E.D., Reed, A.E., and Weinhold, F., NBO, Ver. 3.1.Google Scholar
  13. 13.
    Yang, T., Zhao, X., Xu, Q., Zheng, H., Wang, W.-W., and Li, S.-T., Dalton Trans., 2012, vol. 41, no. 17, p. 5294. DOI: 10.1039/C2DT12420C.CrossRefGoogle Scholar
  14. 14.
    Eliel, E.L., Wilen, S.H., and Doyle, M.P., Basic Organic Stereochemistry, New York: Wiley, 2001.Google Scholar
  15. 15.
    Gilson, M.K. and Irikura, K.K., J. Phys. Chem. B, 2010, vol. 114, no. 49, p. 16304. DOI: 10.1021/jp110434s.CrossRefGoogle Scholar
  16. 16.
    Ghosh, A. and Almlof, J., J. Phys. Chem., 1995, vol. 99, no. 4, p. 1073. DOI: 10.1021/j100004a003.CrossRefGoogle Scholar
  17. 17.
    Strenalyuk, T., Samdal, S., and Volden, H.V., J. Phys. Chem. A, 2008, vol. 112, no. 21, p. 4853. DOI: 10.1021/jp801284c.CrossRefGoogle Scholar
  18. 18.
    Semenov, S.G. and Bedrina, M.E., Russ. J. Gen. Chem., 2009, vol. 79, no. 8, p. 1741. DOI: 10.1134/S1070363209080271.CrossRefGoogle Scholar
  19. 19.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Rev. C.01. Wallingford, CT: Gaussian, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg Nuclear Physics InstituteGatchina, Leningrad oblastRussia

Personalised recommendations