Russian Journal of General Chemistry

, Volume 81, Issue 1, pp 220–233 | Cite as

Phenomenology of complexity: Information in chaotic signals

  • S. F. TimashevEmail author


Inner phenomenological essence was revealed for flicker-noise spec-troscopy (FNS), a methodology for extracting information from multifactor dynamic systems on the basis of primary digital information, which was presented as “pheno-menology of complexity” and “materialization” of Edmund Husserl’s phenomenology. The basic FNS equations used for analysis of experimental data were given. At the present time, the FNS method can be used for solving three types of problems: (1) determination of parameters or patterns that characterize the dynamics or structural features of complex systems; (2) identification of precursors of abrupt changes in the state of various complex systems based on a priori information about the system dynamics; and (3) assessment of the flow dynamics in distributed systems based on analysis of dynamic correlations in stochastic signals that are measured simultaneously at different points in space.


General Chemistry Evolutionary Dynamic Hierarchical Level Anomalous Diffusion Chaotic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhutin, A.V., in Heisenberg, W., Fizika i filosofiya: Chast’ i tseloe (Physics and Philoophy: Part and Whole), Moscow: Nauka, 1989, pp. 361–394.Google Scholar
  2. 2.
    Aristotle, Metafizika (Metaphysics), Rostov-on-Don: Feniks, 1999.Google Scholar
  3. 3.
    Schuster, H.G., Deterministic Chaos. An Introduction, Weinheim: VCH, 1984.Google Scholar
  4. 4.
    Berger, P., Pomeau, Y., and Vidal, C., L’ordre dans le chaos: vers une approche deterministe de la turbulence, Paris: Hermann, 1984.Google Scholar
  5. 5.
    Bak, P., How Nature Works: The Science of Self-Organized Criticality, Oxford: Oxford Univ. Press, 1997.Google Scholar
  6. 6.
    Wolfram, S., A New Kind of Science, Winnipeg: Wolfram Media, 2002.Google Scholar
  7. 7.
    Turchin, V.F., Fenomen nauki. Kiberneticheskii podkhod k evolyutsii (The Phenomenon of Science: A Cybernetical Approach to Evolution), 2nd ed., Moscow: Izd. “ETS,” 2000.Google Scholar
  8. 8.
    Prigogine, I. and Stengers, I., Order out of Chaos. Man’s New Dialogue with Nature, London: Heinemann, 1984.Google Scholar
  9. 9.
    Berry, T., The Dream of the Earth, San Francisco: Sierra Club Nature and Natural Philosophy Library, 1990.Google Scholar
  10. 10.
    Timashev, S.F., Usp. Khim., 1991, vol. 60, pp. 2292–2331.Google Scholar
  11. 11.
    Timashev, S.F., in Problemy geofiziki XXI veka (Problems of Geophysics of XXI Century), Nikolaev, A.V., Ed., Moscow: Nauka, 2003, pp. 104–141.Google Scholar
  12. 12.
    Kantz, H. and Schreiber, T., Nonlinear Time Series Analysis, 2nd ed., Cambridge: Cambridge Univ. Press, 2004.Google Scholar
  13. 13.
    Berkeley, G., A Treatise Concerning the Principles of Human Knowledge, Dublin: Printed by Aaron Rhames for Jeremy Pepyat, 1710.Google Scholar
  14. 14.
    Pais, A., Subtle is the Lord: the Science and the Life of Albert Einstein, Oxford: Oxford Univ. Press, 1982.Google Scholar
  15. 15.
    Husserl, E., Die Idee der Phänomenologie, Hamburg: Meiner, 1986.Google Scholar
  16. 16.
    Seifert, J., Vopr. Filos., 2006, no. 10, pp. 130–152.Google Scholar
  17. 17.
    Heidegger, M., Prolegomena zur Geschichte des Zeitbegriffs, Frankfurt am Main: Vittorio Klostermann, 1979.Google Scholar
  18. 18.
    Timashev, S.F., Flikker-shumovaya spektroskopiya: informatsiya v khaoticheskikh signalakh (Flicker-Noise Spectroscopy: Information in Chaotic Signals), Moscow: Fizmatlit, 2007.Google Scholar
  19. 19.
    Timashev, S.F., Ros. Khim. Zh. (Zh. Ross. Khim. O-va. im. D. I. Mendeleeva), 1997, vol. 41, no. 3, pp. 17–29.Google Scholar
  20. 20.
    Timashev, S.F., Teor. Osn. Khim. Tekhnol., 2000, vol. 34, p. 339.Google Scholar
  21. 21.
    Timashev, S.F., Elektrokhimiya, 2006, vol. 42, no. 5, pp. 480–524.Google Scholar
  22. 22.
    Timashev, S.F. and Polyakov, Yu.S., Fluct. Noise Lett., 2007, vol. 7, no. 2, pp. R15–R47.CrossRefGoogle Scholar
  23. 23.
    Timashev, S.F. and Polyakov, Yu.S., Int. J. Bifurc. Chaos, 2008, vol. 18, no. 9, pp. 2793–2797.CrossRefGoogle Scholar
  24. 24.
    Kratkaya filisofskaya entsiklopediya (Brief Encyclopedia of Philosophy), Moscow: Izd. Gruppa “Progress,” 1994.Google Scholar
  25. 25.
    Klose, J., in Time, Temporality, Now: Experiencing Time and Concept of Time in an Interdisciplinary Perspective, Atmanspacher, H. and Ruhnau, E., Eds., Berlin: Springer, 1997, pp. 23–42.Google Scholar
  26. 26.
    Plato, Dialogi (Dialogues), Moscow: Izd. AST-FOLIO, 2001.Google Scholar
  27. 27.
    Gaidenko, P.P., Vopr. Filos., 2001, no. 7, pp. 77–99.Google Scholar
  28. 28.
    Bunge, M., Philosophy of Physics, 2nd ed., Dordrecht: Reidel, 1973.Google Scholar
  29. 29.
    Mamchur, E.A. and Tian, Yu Cao, Vopr. Filos., 1998, no, 4, p. 150.Google Scholar
  30. 30.
    Nicolis, J.S., Dynamics of Hierarchical Systems: An Evolutionary Approach, Berlin: Springer, 1986.Google Scholar
  31. 31.
    von Weizsäcker C.F., in: Time, Temporality, Now: Experiencing Time and Concept of Time in an Interdisciplinary Perspective, Atmanspacher, H. and Ruhnau, E., Eds., Berlin: Springer, 1997, pp. 91–104.Google Scholar
  32. 32.
    Vladimirov, V.S., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1967.Google Scholar
  33. 33.
    Kant, I.: Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft wird auftreten können, Ditzingen: Reclam, 1989.Google Scholar
  34. 34.
    Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1982.Google Scholar
  35. 35.
    Feder, E., Fractals, New York: Plenum, 1988.Google Scholar
  36. 36.
    Fisher, M.E., Rev. Mod. Phys., 1998, vol. 70, pp. 653–681.CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Parkhutik, V.P. and Timashev, S.F., Elektrokhimiya, 2000, vol. 36, no. 11, pp. 1378–1394.Google Scholar
  39. 39.
    Olemskii, A.I. and Kharchenko, D.O., Samoorganizatsiya samopodobnykh stokhasticheskikh sistem (Self-Organization of Self-Similar Stochastic Systems), Moscow-Izhevsk: R&C Dynamics, 2007.Google Scholar
  40. 40.
    Uchaikin, V.V., Zh. Tekhn. Fiz., 2004, vol. 74, no. 7, pp. 123–126.Google Scholar
  41. 41.
    Uchaikin, V.V., Metod drobnykh proizvodnykh (The Method of Fractional Derivatives), Ulyanovsk: Izd. “Artishok,” 2008.Google Scholar
  42. 42.
    Gitterman, M., Phys. Rev. E, 2000, vol. 62, no. 5, pp. 6065–6070.CrossRefGoogle Scholar
  43. 43.
    Zaslavsky, G.M., Physics of Chaos in Hamiltonian System, London: Imperial Coll. Press, 1998.Google Scholar
  44. 44.
    Timashev, S.F., Polyakov, Yu.S., Yulmetyev, R.M., Demin, S.A., Panischev, O.Yu., Shimojo, S., and Bhattacharya, J., Laser Phys., 2009, vol. 19, no. 4, pp. 836–854.CrossRefGoogle Scholar
  45. 45.
    Timashev, S.F., Polyakov, Yu.S., Misurkin, P.I., and Lakeev, S.G., Anomalous Diffusion in the Dynamics of Complex Processes.
  46. 46.
    Ovchinnikov, A.A., Timashev, S.F., and Belyi, A.A., Kinetika diffuzionno-kontroliruemykh khimicheskikh protsessov (Kinetics of Diffusion-Controlled Chemical Processes), Moscow: Khimiya, 1986.Google Scholar
  47. 47.
    Timashev, S.F., Belyaev, V.E., Timashev, P.S., and Solov’eva, A.B., Kolloidn. Zh., 2006, vol. 68, no. 4, pp. 525–538.Google Scholar
  48. 48.
    Yulmetyev, R.M., Demin, S.A., et al., Physica A, 2006, vol. 369, no. 2, pp. 655–678.CrossRefGoogle Scholar
  49. 49.
    Hayakawa, M. and Timashev, S.F., Nonlin. Proc. Geophys., 2006, vol. 13, pp. 255–263.CrossRefGoogle Scholar
  50. 50.
    Parkhutik, V., Collins, B., Sailor, M., Vstovsky, G., and Timashev, S., Phys. Stat. Sol. (a), 2003, vol. 197, pp. 88–92.CrossRefGoogle Scholar
  51. 51.
    Parkhutik, V., Rayon, E., Ferrer, C., Timashev, S., and Vstovsky, G., Phys. Stat. Sol. (a), 2003, vol. 197, no. 2, pp. 471–475.CrossRefGoogle Scholar
  52. 52.
    Telesca, L., Lapenna, V., Timashev, S., Vstovsky, G., and Martinelli, G., Phys. Chem. Earth, 2004, vol. 29, pp. 389–395.Google Scholar
  53. 53.
    Descherevsky, A.V., Lukk, A.A., Sidorin, A.Ya., Vstovsky, G.V., and Timashev, S.F., Nat. Haz. Earth Syst. Sci, 2003, vol. 3, nos. 3–4, p. 159–164.CrossRefGoogle Scholar
  54. 54.
    Ida, Y., Hayakawa, M., and Timashev, S., Nat. Haz. Earth Syst. Sci., 2007, vol. 7, pp. 479–487.CrossRefGoogle Scholar
  55. 55.
    Misurkin, P.I., Timofeeva, V.A., Vershok, D.B., Timashev, P.S., Kuznetsov, Yu.I., and Solov’eva, A.B., Poverkhnost’. Rentgen Sinkhrotron. Neitron. Issled., 2008, no. 11, p. 57.Google Scholar
  56. 56.
    Lakeev, S.G., Voeikov, V.L., and Timashev, S.F., Ros. Khim. Zh. (Zh. Ross. Khim. O-va. im. D.I. Mendeleeva), 2009, vol. 53, no. 6, pp. 62–69.Google Scholar
  57. 57.
    Magomedbekov, U.G., Gasangadzhieva, U.G., Gasanova, Kh.M, and Magomedbekov, N.Kh., Ros. Khim. Zh. (Zh. Ross. Khim. O-va. im. D. I. Mendeleeva), 2009, vol. 53, no. 6, pp. 74–83.Google Scholar
  58. 58.
    Misurkin, P.I., Aksenova, N.A., Timashev, P.S., Timofeeva, V.A., and Solov’eva, A.B., Ros. Khim. Zh. (Zh. Ross. Khim. O-va. im. D. I. Mendeleeva), 2009, vol. 53, no. 6, pp. 84–92.Google Scholar
  59. 59.
    von Weizsäcker, C.F., Brit. J. Phil. Sci., 1973, vol. 24, p. 321.CrossRefGoogle Scholar
  60. 60.
    Sachkov, Yu.V., Vopr. Fil., 2006, no. 1, pp. 80–94.Google Scholar
  61. 61.
    Schrödinger, E., Mein Leben, meine Weltansicht, Wien: Zsolnay, 1985.Google Scholar
  62. 62.
    Heisenberg, W., Usp. Fiz. Nauk, 1967, vol. 91,issue 4, p. 731. Translated under the title Heisenberg, W., Die Rolle der phänomenologischen Theorien im System der theoretischen Physik, in Preludes in Theoretical Physic, Amsterdam, 1966.Google Scholar
  63. 63.
    Voss, R.F. and Clarke, J., Phys. Rev. Lett., 1976, vol. 36, pp. 42–45.CrossRefGoogle Scholar
  64. 64.
    Zurek, W.H., Phys. Rev. A, 2007, vol. 76, p. 052110–1.CrossRefGoogle Scholar
  65. 65.
    Lloyd, S., Nature, 2007, vol. 450, pp. 1167–1168.CrossRefGoogle Scholar
  66. 66.
    Vaidman, L., Nature, 2008, vol. 451, pp. 137–138.CrossRefGoogle Scholar
  67. 67.
    Fragmenty rannikh grecheskikh filosofov: Chast’ 1: Ot epicheskikh teokosmogonii do vozniknoveniya atomistitki (Fragments of Early Greek Philosophers: Part 1: From Epic Theocosmogonies to the Origin of Atomism), Moscow: Nauka, 1989.Google Scholar
  68. 68.
    Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics, Reading (Massachusetts): Addison-Wesley, 1964.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Karpov Research Physicochemical InstituteMoscowRussia

Personalised recommendations