Russian Journal of General Chemistry

, Volume 80, Issue 12, pp 2501–2511 | Cite as

2-Acetylbenzimidazole phthalazin-1-ylhydrazone and its complexes with transition metals

  • L. D. Popov
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • V. V. Minin
  • E. B. Kaimakan
  • Yu. P. Tupolova
  • B. A. Kogan
Article

Abstract

2-Acetylbenzimidazole phthalazin-1-ylhydrazone (H2L) and its complexes with Cu(II), Ni(II), Mn(II), Zn(II), Cd(II), and Fe(III) were synthesized. The structure of the complexes was determined on the basis of their elemental compositions, IR and ESR spectra, and thermogravimetric, conductometric, and magnetochemical studies. The dinuclear copper complex [CuL]2 was found to display strong antiferromagnetic exchange between the copper(II) ions. The ionization constants, energies of possible conformations of the hydrazone, geometric parameters of the dinuclear complex, and exchange parameters were calculated by quantum-chemical methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitaev, Yu.P. and Buzykin, B.N., Gidrazony (Hydrazones), Moscow: Nauka, 1974.Google Scholar
  2. 2.
    Kogan, V.A., Zelentsov, V.V., Larin, G.M., and Lukov, V.V., Kompleksy perekhodnykh metallov s gidrazonami. Fiziko-khimicheskie svoistva i stroenie (Transition Metal Complexes with Hydrazones. Physicochemical Properties and Structure), Moscow: Nauka, 1990.Google Scholar
  3. 3.
    Parpiev, N.A., Yusupov, V.G., Yakimovich, S.I., and Sharipov, Kh.G., Atsilgidrazony i ikh kompleksy s perekhodnymi metallami (Acylhydrazones and Their Complexes with Transition Metals), Tashkent: Fan, 1988.Google Scholar
  4. 4.
    Ovcharenko, V.I. and Sagdeev, R.Z., Usp. Khim., 1999, vol. 68, no. 6, p. 381.Google Scholar
  5. 5.
    Kahn, O., Acc. Chem. Res., 2000, vol. 33, no. 10, p. 647.CrossRefGoogle Scholar
  6. 6.
    Leuenberger, M.N. and Loss, D., Nature, 2001, vol. 410, p. 789.CrossRefGoogle Scholar
  7. 7.
    Starikov, A.G., Kogan, V.A., Lukov, V.V., Minkin, V.I., and Minyaev, R.M., Koord. Khim., 2009, vol. 35, no. 8, p. 625.Google Scholar
  8. 8.
    Kogan, V.A., Levchenkov, S.I., Popov, L.D., and Shcherbakov, I.N., Ross. Khim. Zh., 2009, vol. 53, no. 1, p. 86.Google Scholar
  9. 9.
    Zelenin, K.N., Khorseeva, L.A., and Alekseev, V.V., Khim.-Farm. Zh., 1992, vol. 26, no. 5, p. 30.Google Scholar
  10. 10.
    Kaminskas, L.M., Pyke, S.M., and Burcham, P.C., J. Pharm. Exp. Ther., 2004, vol. 310, no. 3, p. 1003.CrossRefGoogle Scholar
  11. 11.
    Segura-Pacheco, B., Trejo-Becerril, C., Perez-Cardenas, E., Taja-Chayeb, L., Mariscal, I., Chavez, A., Acuna, C., Salazar, A.M., Lizano, M., and Duenas-Gonzalez, A., Clin. Cancer Res., 2003, vol. 9, no. 5, p. 1596.Google Scholar
  12. 12.
    Vicini, P., Incerty, M., Doytchinova, I.A., La Colla, P., Busonera, B., and Loddo, R., Eur. J. Med. Chem., 2006, vol. 48, no. 5, p. 624.CrossRefGoogle Scholar
  13. 13.
    Levchenkov, S.I., Lukov, V.V., Kogan, V.A., and Anisimova, V.A., Koord. Khim., 1997, vol. 23, no. 3, p. 178.Google Scholar
  14. 14.
    Garnovskii, A.D., Garnovskii, D.A., Burlov, A.S., Zaletov, V.G., Lukov, V.V., Amarskii, E.G., and Levchenkov, S.I., Koord. Khim., 1996, vol. 22, no. 11, p. 838.Google Scholar
  15. 15.
    Raspopova, E.A., Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Kogan, V.A., and Levchenkov, S.I., Russ. J. Gen. Chem., 2008, vol. 78, no. 8, p. 1586.CrossRefGoogle Scholar
  16. 16.
    Shcherbakov, I.N., Popov, L.D., Levchenkov, S.I., Morozov, A.N., Kogan, V.A., and Vikrishchuk, A.D., Russ. J. Gen. Chem., 2009, vol. 79, no. 4, p. 663.CrossRefGoogle Scholar
  17. 17.
    Lukov, V.V., Abramova, N.A., Kogan, V.A., Anisimova, V.A., Starikov, A.G., and Bondarenko, G.I., Zh. Neorg. Khim., 1988, vol. 33, no. 2, p. 391.Google Scholar
  18. 18.
    Paolucci, G., Stelluto, S., Sitran, S., Ajo, D., Benetollo, F., Polo, A., and Bombieri, G., Inorg. Chim. Acta, 1992, vol. 193, no. 1, p. 57.CrossRefGoogle Scholar
  19. 19.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11 623.CrossRefGoogle Scholar
  20. 20.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  21. 21.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785.CrossRefGoogle Scholar
  22. 22.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., and Kogan, V.A., Russ. J. Gen. Chem., 2007, vol. 77, no. 7, p. 1284.CrossRefGoogle Scholar
  23. 23.
    Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, no. 1, p. 117.CrossRefGoogle Scholar
  24. 24.
    Tomasi, J. and Persico, M., Chem. Rev., 1994, vol. 94, no. 7, p. 2027.CrossRefGoogle Scholar
  25. 25.
    Cammi, R. and Tomasi, J., J. Comput. Chem., 1995, vol. 16, no. 12, p. 1449.CrossRefGoogle Scholar
  26. 26.
    Cammi, R., Mennucci, B., and Tomasi, J., J. Phys. Chem. A, 2000, vol. 104, no. 23, p. 5631.CrossRefGoogle Scholar
  27. 27.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Wallingford CT: Gaussian, 2004.Google Scholar
  28. 28.
    Liptak, M.D. and Shields, G.C., J. Am. Chem. Soc., 2001, vol. 123, no. 30, p. 7314.CrossRefGoogle Scholar
  29. 29.
    Samus’, N.M., Tsapkov, V.I., and Kravchenko, V.N., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1929.Google Scholar
  30. 30.
    Kukushkin, Yu.N., Khodzhaev, O.F., Budanova, V.F., and Parpiev, N.A., Termoliz koordinatsionnykh soedinenii (Thermolysis of Coordination Compounds), Tashkent: Fan, 1986.Google Scholar
  31. 31.
    Bleaney, B. and Bowers, K.D., Proc. Royal. Soc. London, Ser. A, 1952, vol. 214, no. 1119, p. 451.CrossRefGoogle Scholar
  32. 32.
    Kalinnikov, V.T. and Rakitin, Yu.V., Vvedenie v magnetokhimiyu (Introduction to Magnetochemistry), Moscow: Nauka, 1980.Google Scholar
  33. 33.
    Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.Google Scholar
  34. 34.
    Rakitin, Yu.V., Itogi Nauki Tekh. Stroen. Mol. Khim. Svyaz’, 1986, vol. 10, p. 132.Google Scholar
  35. 35.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Y.P., Kogan, V.A., and Lukov, V.V., J. Coord. Chem., 2008, vol.61, no. 3, p. 392.CrossRefGoogle Scholar
  36. 36.
    Ginsberg, A.P., J. Am. Chem. Soc., 1980, vol.102, no. 1, p. 111.CrossRefGoogle Scholar
  37. 37.
    Noodleman, L., Peng, C.Y., Case, D.A., Mouesca, J.-M., Coord. Chem. Rev., 1995, vol. 144, p. 199.CrossRefGoogle Scholar
  38. 38.
    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, no. 1, p. 81.CrossRefGoogle Scholar
  39. 39.
    Zhurko, G.A., Chemcraft ver. 1.5; http://www.chemcraftprog.com.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. D. Popov
    • 1
  • S. I. Levchenkov
    • 2
  • I. N. Shcherbakov
    • 1
  • V. V. Minin
    • 3
  • E. B. Kaimakan
    • 1
  • Yu. P. Tupolova
    • 1
  • B. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Research CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations