Russian Journal of General Chemistry

, Volume 80, Issue 8, pp 1710–1717 | Cite as

Studies of the interaction between apigenin and bovine serum albumin by spectroscopic methods

  • Yonghui Shang
  • Hua Li


The interaction between apigenin (Ap) and bovine serum albumin (BSA) in physiological buffer (pH = 7.4) is investigated by fluorescence quenching technique and UV-vis absorption spectra. The results reveal that Ap could strongly quench the intrinsic fluorescence of BSA. The quenching mechanism of Ap for BSA varies with the change of Ap concentration. when Ap concentration is lower, it is a static quenching procedure, when Ap concentration is higher, a combined quenching (both static and dynamic) would operate. The apparent binding constants Ka and number of binding sites n of Ap with BSA are obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δr H m and entropy change (Δr S m ), are calculated to be −15.382 kJ mol−1 K−1 < 0 and 104.888 J mol−1 K−1 > 0, respectively, which indicate that the interaction of Ap with BSA is driven mainly by hydrogen bonding and hydrophobic interactions. The distance r between BSA and Ap is calculated to be 1.89 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra show that binding of Ap with BSA cannot induce conformational changes in BSA.


Bovine Serum Albumin General Chemistry Apigenin Intrinsic Fluorescence Static Quenching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Havsteen, B.H., Pharmacol. Ther., 2002, vol. 96, no. 67, p. 202Google Scholar
  2. 2.
    Mariano Cárdenasa, Mariel Mardera, Viviana C. Blanka, and Leonor, P., Roguin.Bioorg. Med. Chem., 2006, vol. 14, pp. 2966–2971.CrossRefGoogle Scholar
  3. 3.
    Vargo, M,A., Voss, O.H, Poustka, F., et al. Biochem. Pharmacol., 2006, vol. 72, no. 6, pp. 681–692.CrossRefGoogle Scholar
  4. 4.
    Psotova, J., Chlopcikova, S., Miketova, P., Hrbac, J., and Simanek, V., Phytother. Res., 2004, no. 18, pp. 516–521.Google Scholar
  5. 5.
    Ashoka, S., Seetharamappa, J., Kandagal, P.B., and Shaikh, S.M.T., J. Lumin.,, 2006, no. 121, pp. 179–186.Google Scholar
  6. 6.
    Guharay, J., Sengupta, B., and Sengupta, P.K., Proteins, 2001, vol. 43, no.2, p. 71.CrossRefGoogle Scholar
  7. 7.
    Kandagal, P.B., Ashoka, S., Seetharamappa, J., Shaikh, S.M.T., Jadegoud, Y., and Ijare, P.B., J. Pharm. Biomed. Anal., 2006, no. 41, pp. 393–399.Google Scholar
  8. 8.
    Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G., Diamantoglou, S., and Tajmir-Riahi, H.A., J. Mol. Struct., 2006, no. 798, pp. 69–74Google Scholar
  9. 9.
    Kandagal, P.B., Shaikh, S.M.T., Manjunatha, D.H., Seetharamappa, J., and Nagaralli, B.S., J. Photochem. Photobiol. A, 2007, no. 189, pp. 121–127.Google Scholar
  10. 10.
    Shen, X.C., Liang, H., Guo, J.H., Song, C., He, X.W., and Yuan, Y.Z., J. Inorg. Biochem., 2003, no. 95, pp. 124–130.Google Scholar
  11. 11.
    Sulkowska, A., Bojko, B., Rownicka, J., Rezner, P., and Sulkowski, W.W., J. Mol. Struct., 2005, no. 744, pp. 781–787.Google Scholar
  12. 12.
    Maria Hepel, Electroanalysis, 2005, no. 17, pp. 1401–1412.Google Scholar
  13. 13.
    Girard, I. and Ferry, S., J. Pharmaceut. Biomed., 1996, no. 14, pp. 583–591.Google Scholar
  14. 14.
    Millot, M.C., Servagent-Noinville, S., Taleb, N.L., Baron, M.H., Revault, M., and Sebille, B., J. Chromatogr. B: Biomed. Sci., 2001, no. 753, pp. 101–113.Google Scholar
  15. 15.
    Cao, H., Liu, Q., Shi, J., et al., Analytical Letters, 2008, no. 41, pp. 521–532.Google Scholar
  16. 16.
    Qu, L.-b., Wang, L., Yang, R., et al., Acta Pharmaceutica Sinica, 2006, no. 41, pp. 352–357.Google Scholar
  17. 17.
    Yuan, J.-L., Lv, Z., Liu, Z.-G., et al., J. of Photochemistry and Photobiology A: Chemistry, 2007, no. 191, pp. 104–113.Google Scholar
  18. 18.
    Grattan, K.T.V. and Meggitt, B.T., Chemical and Environmental Sensing, Lakowicz, J.R., Ed., New York: Plenum Press, 1999, pp. 237–265.Google Scholar
  19. 19.
    Zhang, X.W, Zhao, F.L, and Li, K.A., J. Chem. Chin. Univ., 1999, no. 20, pp. 1063–1067.Google Scholar
  20. 20.
    Wang, Y., Zhang, H., Zhang, G., Tao, W., Fei, Z., Liu, Z., Wang, Y.-Q., Zhang, H.-M. Zhang, G.C., Tao, W.-H., Fei, Z.H., and Liu, Z.T., J. Pharm. Biomed. Anal., 2007, no. 43, pp. 1869–1875.Google Scholar
  21. 21.
    Jiang, Min, Xie, Meng-Xia, Zheng, Dong, Liu, Yuan, Li, Xiao-Yu, and Chen, Xing, J. Mol. Struct., 2004, no. 692, pp. 71–80.Google Scholar
  22. 22.
    Spector, T., Hall, W.W., and Krenitsky, T.A., Biochem. Pharmacol. 1986, no. 35(18), pp. 3109–3114.Google Scholar
  23. 23.
    Aiqin, Gong, Xiashi, Zhu, Yanyan, Hu, and Suhai, Yu., Talanta, 2007, no. 73, pp. 668–673.Google Scholar
  24. 24.
    Shuyun, Bi, Lan Ding, Yuan Tian, Daqian Song, Xin Zhou, Xia Liu, and Hanqi Zhang, J. Mol. Struct., 2004, no. 703, pp. 37–45.Google Scholar
  25. 25.
    Yan-Jun Hua, Hua-Guang Yua, Jia-Xin Donga, Xi Yanga, and Yi Liu, Spectrochim. Acta, Part A, 2005, no. 65, pp. 988–992.Google Scholar
  26. 26.
    Yan-Jun Hu, Yi Liu, Jia-Bo Wang, Xiao-He Xiao, and Song-Sheng Qu, J. of Pharmaceutical and Biomedical Analysis, 2004, no. 36, pp. 915–919.Google Scholar
  27. 27.
    Sulkowska, A., J. Mol. Struct., 2003, no. 614, pp. 227–232.Google Scholar
  28. 28.
    Yan-Qing Wang, Hong-Mei Zhang, Gen-Cheng Zhang, Wei-Hua Tao, Zheng-Hao Fei, and Zong-Tang Liu, J. Pharm. Biomed. Anal., 2007, no. 43, pp. 1869–1875.Google Scholar
  29. 29.
    Leckband, D., Annu. Rev. Biophys. Biomol. Struct., 2000, no. 29, pp. 1–26.Google Scholar
  30. 30.
    Jing-Ci Li, Ning Lib, Qiu-Hua Wu, Zhi Wang, Jing-Jun Ma, Chun Wang, and Li-Juan Zhang, J. Mol. Struct., 2007, no. 833, p. 184.Google Scholar
  31. 31.
    Ross, P.D. and Subramanian, S., Biochemistry, 1981, no. 20, pp. 3096–3102.Google Scholar
  32. 32.
    Tian, J., Liu, J., Hub, Z., and Chen, X., Bioorg. Med. Chem., 2005, no. 13, pp. 4124–4129.Google Scholar
  33. 33.
    Ferenc Zsila, Zsolt Bikádi, and Miklós Simonyi, Biochem. Pharmacol., 2003, no. 65, pp. 447–456.Google Scholar
  34. 34.
    Naik, D.B., Moorthy, P.N., and Priyadarsini, K.I., Chem. Phys. Lett., 1990, no. 168, pp. 533–538.Google Scholar
  35. 35.
    Modern Quantum Chemistry, Förster, T. and Sinanoglu, O., Eds., vol. 3, New York: Academic Press, 1996, p. 93.Google Scholar
  36. 36.
    Feng-Ling Cuia, Jing Fanb, Jian-Ping Lib, and Zhi-De Hu, Bioorg. Med. Chem., 2004, no. 12, pp. 151–157.Google Scholar
  37. 37.
    Hu, Y.J., Liu, Y., and Zhang, L.X., J. Mol. Struct., 2005, no. 750, pp. 174–178.Google Scholar
  38. 38.
    Ya-Ping Wang, Yan-li Wei, and Chuan Dong, J. Photochem. Photobiol., 2006, no. 17, pp. 6–11.Google Scholar
  39. 39.
    Lloyd, J.B.F., Nature Phys Sci., 1971, no. 231, pp. 64–65.Google Scholar
  40. 40.
    Chen, G.Z., Huang, X.Z., Xu, J.G., et al., Methods of Fluorescence Analysis, 2nd ed., Beijing: Science Press, 1990.Google Scholar
  41. 41.
    Apicella, B., Ciajolo, A., and Tregrossi, A., Anal.Chem., 2004, no. 76, pp. 2138–2143.Google Scholar
  42. 42.
    Miller, J.N., Proc. Anal. Div. Chem. Soc., 1979, no. 16, pp. 203–208.Google Scholar
  43. 43.
    Jianghong, T., Feng, L., and Xingguo, C., Bioorg. Med. Chem., 2006, no. 14, pp. 3210–3217.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Analytical Science, School of Chemistry and Material ScienceNorthwest UniversityXi’anPR China
  2. 2.Department of ChemistryXianyang Normal CollegeXianyangPR China

Personalised recommendations