Advertisement

Russian Journal of General Chemistry

, Volume 78, Issue 4, pp 532–542 | Cite as

Interpolation determination of the lattice energy of ionic crystals within the framework of stereoatomic model

  • V. V. Oshchapovskii
Article

Abstract

A new method based on graph theory was suggested for interpolation calculation of the lattice energy U of ionic crystals. The method is based on revealing matrix correlation between the ionic radii and U values for MX compounds, where M is a metal and X is halogen, hydrogen, or chalcogen. A new formula was obtained for calculating the lattice energy solely from the ionic radii, without introduction of abitrary factors. The mean error of determining U for alkali metal halides is 0.49%. The lattice energies were calculated for a large group of inorganic substances. The accuracy of the interpolation calculation of the lattice energy of ionic crystals depends on the degree of ionicity of the bond: With an increase in the covalent contribution, the error increases.

Keywords

General Chemistry PbSe AgBr Lattice Energy Ionic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M. and Huang, K., Dynamic Theory of Crystal Lattices, Oxford: Clarendon, 1954. Translated under the title Dinamicheskaya teoriya kristallicheskikh reshetok, Moscow: Inostrannaya Literatura, 1958, p. 488.Google Scholar
  2. 2.
    Waddingthon, T.C., Adv. Inorg. Chem. Radiochem., 1959, vol. 1, p. 157.Google Scholar
  3. 3.
    Mamulov, S.A., Sposoby vychisleniya energii reshetki kristallov (Procedures for Calculating Crystal Lattice Energies), Stalinsk, 1961, p. 191.Google Scholar
  4. 4.
    Tosi, M., Solid State Phys., 1964, vol. 16, p. 1.Google Scholar
  5. 5.
    Ladd, M.F.C. and Lee, W.H., in Progress in State Chemistry, New York, 1964, vol. 1, p. 37; 1965, vol. 2, p. 378.CrossRefGoogle Scholar
  6. 6.
    Samsonov, G.V. and Shulishova, O.I., in Vysokotemperaturnye neorganicheskie soedineniya (High-Temperature Inorganic Compounds), Kiev: Naukova Dumka, 1965, p. 116.Google Scholar
  7. 7.
    Dass, L. and Saxena, S.C., J. Chem. Phys., 1965, vol. 43, no. 5, p. 1747.CrossRefGoogle Scholar
  8. 8.
    Levin, A.A., Syrkin, Ya.K., and Dyatkina, M.E., Usp. Khim., 1969, vol. 38, no. 2, p. 193.Google Scholar
  9. 9.
    Urusov, V.S., Energeticheskaya kristallokhimiya (Energetic Crystal Chemistry), Moscow: Nauka, 1975, p. 335.Google Scholar
  10. 10.
    Batsanov, S.S., Eksperimental’nye osnovy strukturnoi khimii: Spravochnik (Experimental Principles of Structural Chemistry: Handbook), Moscow: Standarty, 1986, p. 238.Google Scholar
  11. 11.
    Yadav, R.B., Solid State Commun., 1983, vol. 46, no. 4, p. 341.CrossRefGoogle Scholar
  12. 12.
    Woodkock, L.V., J. Chem. Soc., Faraday Trans. 2, 1974, vol. 70, no. 8, p. 1405.CrossRefGoogle Scholar
  13. 13.
    Kapustinskii, A.F., Zh. Obshch. Khim., 1943, vol. 13, nos. 7–8, p. 497.Google Scholar
  14. 14.
    Berge, C., The Theory of Graphs and Its Applications, London: Methuen, 1962. Translated under the title Teoriya grafov i ee primeneniya, Moscow: Inostrannaya Literatura, 1962, p. 319.Google Scholar
  15. 15.
    Oshchapovsky, V.V., Adv. Model. Anal. A, 1994, vol. 2, no. 3, p. 7.Google Scholar
  16. 16.
    Pauling, L., The Natur eof the Chemical Bond, and the Structure of Molecules and Crystals; An Introduction to Modern Structural Chemistry, Ithaca, NY: Cornell Univ. Press, 1940, 2nd ed. Translated under the title Priroda khimicheskoi svyazi, Moscow: Goskhimizdat, 1947, p. 440.Google Scholar
  17. 17.
    Coulson, C.A., Valence, London: Oxford Univ. Press, 1962, 2nd ed. Translated under the title Valentnost’, Moscow: Mir, 1965, p. 427.Google Scholar
  18. 18.
    Cartledge, G.N., J. Am. Chem. Soc., 1928, vol. 50, p. 2871.Google Scholar
  19. 19.
    Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, no. 5, p. 751.CrossRefGoogle Scholar
  20. 20.
    Yatsimirskii, K.B., Zh. Neorg. Khim., 1961, vol. 6, no. 3, p. 518.Google Scholar
  21. 21.
    Oshchapovsky, V.V., Sci. Israel-Technol. Adv., 1999, issue 2, vol. 1, p. 37.Google Scholar
  22. 22.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sov. Entsiklopediya, 1988, vol. 1, p. 623.Google Scholar
  23. 23.
    Landolt-Bornstein, Zahlenwerte und Funktionen, Berlin, 1955, vol. 1, part 4: Kristalle, p. 1007.Google Scholar
  24. 24.
    Wells, A.F., Structural Inorganic Chemistry, Oxford: Clarendon, 1986. Translated under the title Strukturnaya neorganicheskaya khimiya, Moscow: Mir, 1987, vol. 1, p. 408.Google Scholar
  25. 25.
    Rabinovich, V.A. and Khavin, Z.Ya., Kratikii khimicheskii spravochnik (Concise Chemical Handbook), Leningrad: Khimiya, 1991, p. 432.Google Scholar
  26. 26.
    Naray-Szabo, I., Inorganic Crystal Chemistry, Budapest: Akad. Kiado, 1969. Translated under the title Neorganicheskaya kristallokhimiya, Budapest, 1969, p. 503.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Lviv State University of Safety of Vital ActivityLvivUkraine

Personalised recommendations