Russian Journal of General Chemistry

, Volume 77, Issue 12, pp 2101–2107 | Cite as

Structures of the nearest surroundings of the K+, Rb+, and Cs+ ions in aqueous solutions of their salts

  • P. R. Smirnov
  • V. N. Trostin
Article

Abstract

Published data on structural characteristics of hydration of K+, Rb+, and Cs+ ions in aqueous solutions of their salts under standard conditions, including authors’ X-ray diffraction data, are summarized and correlated. The structural parameters of the nearest surrounding of the K+, Rb+, and Cs+ ions, such as the coordination numbers, interparticle distances, and types of ionic association, are discussed. It is noted that, because of weak tendency of these cations to hydration, the parameters of their coordination spheres strongly depend on the concentration and chemical nature of counterions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smirnov, P.R. and Trostin, V.N., Zh. Obshch. Khim., 2006, vol. 76, no. 2, p. 187.Google Scholar
  2. 2.
    Vinogradov, E.V., Smirnov, P.R., and Trostin, V.N., Izv. Ross. Akad. Nauk, Ser. Khim., 2003, no. 6, p. 1186.Google Scholar
  3. 3.
    Marcus, Y., Chem. Rev., 1988, vol. 88, no. 8, p. 1475.CrossRefGoogle Scholar
  4. 4.
    Ohtaki, H. and Radnai, T., Chem. Rev., 1993, vol. 93, no. 3, p. 1157.CrossRefGoogle Scholar
  5. 5.
    Krestov, G.A., Termodinamika ionnykh protsessov v rastvorakh (Thermodynamics of Ionic Processes in Solutions), Leningrad: Khimiya, 1984.Google Scholar
  6. 6.
    Samoilov, O.Ya., Struktura vodnykh rastvorov elektrolitov i gidratatsiya ionov (Structure of Aqueous Electrolyte Solutions and Ion Hydration), Moscow: Akad. Nauk SSSR, 1957.Google Scholar
  7. 7.
    Eigen, M., Pure Appl. Chem., 1965, vol. 6, no. 1, p. 97.CrossRefGoogle Scholar
  8. 8.
    Izmailov, N.A., Kruglyak, Yu.A., Dokl. Akad. Nauk SSSR, 1960, vol. 134, no. 6, p. 1390.Google Scholar
  9. 9.
    Lyashchenko, A.K., Zh. Fiz. Khim., 1976, vol. 50, no. 11, p. 2729.Google Scholar
  10. 10.
    Ohtaki, H. and Fukushima, N., J. Solution Chem., 1992, vol. 21, no. 1, p. 23.CrossRefGoogle Scholar
  11. 11.
    Palincas, G., Radnai, T., and Haidu, H., Z. Naturforsch. (a), 1980, vol. 35, no. 1, p. 107.Google Scholar
  12. 12.
    Shapovalov, I.M., Radchenko, I.V., and Lesovitskaya, M.K., Zh. Strukt. Khim., 1963, vol. 4, no. 1, p. 10.Google Scholar
  13. 13.
    Terekhova, D.S. and Radchenko, I.V., Zh. Strukt. Khim., 1969, vol. 10, no. 6, p. 1102.Google Scholar
  14. 14.
    Terekhova, D.S., Ryss, A.I., and Radchenko, I.V., Zh. Strukt. Khim., 1969, vol. 10, no. 5, p. 923.Google Scholar
  15. 15.
    Skryshevskii, A.F., Strukturnyi analiz zhidkostei i amorfnykh tel (Structural Analysis of Liquids and Amorphous Bodies), Moscow: Vysshaya Shkola, 1980.Google Scholar
  16. 16.
    Heije, G., Luck, W.A.P., and Heinzinger, K., J. Phys. Chem., 1987, vol. 91, no. 2, p. 331.CrossRefGoogle Scholar
  17. 17.
    Degreve, L., Pauli, V.M., and Duarte, M.A., J. Chem. Phys., 1997, vol. 106, no. 2, p. 655.CrossRefGoogle Scholar
  18. 18.
    Migliore, M., Fornili, S.I., Spohr, E., Palincas, G., and Heinzinger, K., Z. Naturforsch. (a), 1986, vol. 41, no. 6, p. 826.Google Scholar
  19. 19.
    Lee, H.M., Kim, J., Lee, S., Mhin, B.J., and Kim, K.S., J. Chem. Phys., 1999, vol. 111, no. 9, p. 3995.CrossRefGoogle Scholar
  20. 20.
    Chizhik, V.I., Mikhailov, V.I., and Pak Chzhon Su, Teor. Eksp. Khim., 1986, vol. 22, no. 4, p. 502.Google Scholar
  21. 21.
    Ohtomo, N. and Arakawa, K., Bull. Chem. Soc. Jpn., 1980, vol. 53, no. 7, p. 1789.CrossRefGoogle Scholar
  22. 22.
    Tongraar, A., Liedl, K.R., and Rode, B.M., J. Phys. Chem. A, 1998, vol. 102, no. 50, p. 10340.Google Scholar
  23. 23.
    Rempe, S.B., Asthagiri, D., and Pratt, L.R., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 8, p. 1966.CrossRefGoogle Scholar
  24. 24.
    Kistenmacher, H., Popkie, H., and Clementi, E., J. Chem. Phys., 1974, vol. 61, no. 3, p. 799.CrossRefGoogle Scholar
  25. 25.
    Petrun’kin, S.P., Trostin, V.N., and Krestov, G.A., Koord. Khim., 1990, vol. 16, no. 1, p. 36.Google Scholar
  26. 26.
    Petrun’kin, S.P. and Trostin, V.N., Zh. Obshch. Khim., 1991, vol. 61, no. 4, p. 828.Google Scholar
  27. 27.
    Smirnov, P.R., Trostin, V.N., and Krestov, G.A., Dokl. Akad. Nauk SSSR, 1988, vol. 299, no. 4, p. 925.Google Scholar
  28. 28.
    Nikologorskaya, E.L., Kuznetsov, V.V., Grechin, O.V., and Trostin, V.N., Zh. Neorg. Khim., 2000, vol. 45, no. 11, p. 1759.Google Scholar
  29. 29.
    Neilson, G.W. and Skipper, N., Chem. Phys. Lett., 1985, vol. 114, no. 1, p. 35.CrossRefGoogle Scholar
  30. 30.
    Lu, Gui-Wu, Li, Chun-Xi, Wang, Wen-Chuan, and Wang, Zi-Hao, Mol. Phys., 2005, vol. 103, no. 5, p. 599.CrossRefGoogle Scholar
  31. 31.
    Oparin, R.D., Fedotova, M.V., and Trostin, V.N., Zh. Obshch. Khim., 2004, vol. 74, no. 1, p. 17.Google Scholar
  32. 32.
    Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5836.CrossRefGoogle Scholar
  33. 33.
    Hummer, G. and Soumpasis, D.M., Mol. Phys., 1992, vol. 75, no. 3, p. 633.CrossRefGoogle Scholar
  34. 34.
    Impey, R.W., Madden, P.A., and McDonald, O.H., J. Chem. Phys., 1983, vol. 87, no. 25, p. 5071.CrossRefGoogle Scholar
  35. 35.
    Mezei, M. and Beveridge, D.L., J. Chem. Phys., 1981, vol. 74, no. 12, p. 6902.CrossRefGoogle Scholar
  36. 36.
    Bounds, D.G., Mol. Phys., 1985, vol. 54, no. 6, p. 1335.CrossRefGoogle Scholar
  37. 37.
    Clementi, E. and Barsotti, R., Chem. Phys. Lett., 1978, vol. 59, no. 1, p. 21.CrossRefGoogle Scholar
  38. 38.
    Barsotti, R., Fromm, J., and Watts, R.O., Theor. Chim. Acta, 1976, vol. 43, no. 2, p. 101.CrossRefGoogle Scholar
  39. 39.
    Shevardina, L.B. and Pinchuk, V.M., Zh. Fiz. Khim., 1988, vol. 62, no. 6, p. 1559.Google Scholar
  40. 40.
    Vasin, S.K., Aleshko-Ozhevskii, Yu.P., and Klement’eva, I.I., Zh. Fiz. Khim., 1980, vol. 54, no. 7, p. 1884.Google Scholar
  41. 41.
    Fishkis, M.Ya. and Soboleva, T.E., Zh. Strukt. Khim., 1974, vol. 15, no. 2, p. 175.Google Scholar
  42. 42.
    Lu, Gui-wu, Li, Chun-xi, Wang, Wen-chuan, and Wang, Zi-hao, Fluid Phase Equil., 2004, vol. 225, nos. 1–2, p. 1.CrossRefGoogle Scholar
  43. 43.
    Vieira, D.S. and Degreve, L., J. Mol. Struct. (THEOCHEM), 2002, vol. 580, no. 1, p. 127.CrossRefGoogle Scholar
  44. 44.
    Emel’yanov, M.I. and Yagodarov, V.P., Zh. Strukt. Khim., 1973, vol. 14, no. 5, p. 919.Google Scholar
  45. 45.
    Vorgin, B.F.J., Knapp, P.S., Flint, W.L., Anton, A., Highberger, G., and Malinovski, E.R.J., J. Chem. Phys., 1971, vol. 54, p. 178.CrossRefGoogle Scholar
  46. 46.
    Mazitov, R.K., Buslaeva, M.N., and Dudnikova, K.T., Dokl. Akad. Nauk SSSR, 1974, vol. 231, no. 1, p. 139.Google Scholar
  47. 47.
    Kubozono, Y., Hirano, A., Maeda, H., Kashino, S., Emura, S., and Ishida, H., Z. Naturforsch. (a), 1994, vol. 49, no. 6, p. 727.Google Scholar
  48. 48.
    Bertagnolli, H., Ertel, T.S., Hoffman, M., and Frahm, R., Ber. Bunsenges. Phys. Chem., 1991, vol. 95, no. 6, p. 704.Google Scholar
  49. 49.
    Ramos, S., Barnes, A.C., Neilson, G.W., and Capitan, M.J., Chem. Phys., 2000, vol. 258, nos. 2–3, p. 171.CrossRefGoogle Scholar
  50. 50.
    D’Angelo, P. and Persson, I., Inorg. Chem., 2004, vol. 43, no. 11, p. 3543.CrossRefGoogle Scholar
  51. 51.
    Hofer, T.S., Randolf, B.R., and Rode, B.M., J. Comput. Chem., 2005, vol. 26, no. 9, p. 949.CrossRefGoogle Scholar
  52. 52.
    Briant, C.L. and Burton, J.J., J. Chem. Phys., 1976, vol. 64, no. 8, p. 2888.CrossRefGoogle Scholar
  53. 53.
    Aqvist, J., J. Phys. Chem., 1990, vol. 94, p. 8021.CrossRefGoogle Scholar
  54. 54.
    Smirnov, P.R. and Trostin, V.N., Struktura kontsentrirovannykh vodnykh rastvorov elektrolitov s kislorodsoderzhashchimi anionami (Structure of Concentrated Aqueous Solutions of Electrolytes with Oxygen-Containing Anions), Ivanovo: Inst. Khimii Nevodnykh Rastvorov Ross. Akad. Nauk, 1994.Google Scholar
  55. 55.
    Frost, R.L. and James, D.W., J. Chem. Soc., Faraday Trans. 1, 1982, vol. 78, no. 11, p. 3235.CrossRefGoogle Scholar
  56. 56.
    Ludwig, K., Warburton, W.K., and Fontain, A., J. Chem. Phys., 1987, vol. 87, no. 1, p. 620.CrossRefGoogle Scholar
  57. 57.
    Tamura, Y., Yamaguchi, T., Okada, I., and Ohtaki, H., Z. Naturforsch. (a), 1987, vol. 42, no. 4, p. 367.Google Scholar
  58. 58.
    Tamura, Y., Ohtaki, H., and Okada, I., Z. Naturforsch. (a), 1991, vol. 46, no. 12, p. 1083.Google Scholar
  59. 59.
    Ohtomo, N. and Arakawa, K., Bull. Chem. Soc. Jpn., 1979, vol. 52, no. 10, p. 2755.CrossRefGoogle Scholar
  60. 60.
    Novikov, A.G., Rodnikova, M.N., Savostin, V.V. and Sobolev, O.V., J. Mol. Liq., 1999, vol. 82, nos. 1–2, p. 83.CrossRefGoogle Scholar
  61. 61.
    Smirnov, P.R., Trostin, V.N., and Krestov, G.A., Zh. Fiz. Khim., 1992, vol. 66, no. 5, p. 1391.Google Scholar
  62. 62.
    Ramos, S., Neilson, G.W., Barnes, A.C., and Buchanan, P., J. Chem. Phys., 2005, vol. 123, paper 214501.Google Scholar
  63. 63.
    Szasz, Gy.J. and Heinzinger, K., Z. Naturforsch. (a), 1983, vol. 38, no. 2, p. 214.Google Scholar
  64. 64.
    Vogel, P.C. and Heinzinger, K., Z. Naturforsch. (a), 1975, vol. 30, nos. 6–7, p. 789.Google Scholar
  65. 65.
    Heinzinger, K. and Vogel, P.C., Z. Naturforsch. (a), 1976, vol. 31, no. 5, p. 463.Google Scholar
  66. 66.
    Ionov, V.M., Mazitov, R.K., and Samoilov, O.Ya., Zh. Strukt. Khim., 1969, vol. 10, p. 407.Google Scholar
  67. 67.
    Samoilov, O.Ya., Zh. Strukt. Khim., 1970, vol. 11, no. 6, p. 990.Google Scholar
  68. 68.
    Bertagnolli, H., Weidner, J., and Zimmermann, H.W., Ber. Bunsenges. Phys. Chem., 1974, vol. 78, no. 1, p. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • P. R. Smirnov
    • 1
  • V. N. Trostin
    • 1
  1. 1.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations