Advertisement

Dianilineglyoxime Salt and Its Binuclear Zn(II) and Mn(II) Complexes with 1,3-Benzenedicarboxylic Acid: Synthesis and Structures

  • 15 Accesses

Abstract

Single crystals of dianilineglyoxime (DAnH2) in the form of hydrate salts [DAnH3](ClO4) ∙ H2O (I) and [DAnH3](ClO4) ∙ 1.25H2O (II) are obtained. Three binuclear zinc(II) and manganese(II) compounds with dianilineglyoxime and 1,3-benzenedicarboxylic acid (1,3-Н2Bdc) are synthesized: [Zn2(DAnH2)2(1,3-Bdc)2(DMF)4] ∙ 2DMF ∙ MeOH · 1.5H2O (III), [Mn2(DAnH2)2(1,3-Bdc)2(DMF)4] ∙ 2DMF (IV), and {[Mn2(DAnH2)2(1,3-Bdc)2(DMF)2(CH3OH)2][Mn2(DAnH2)2(1,3-Bdc)2(DMF)4] ∙ 2CH3OH} (V). The compositions and structures of compounds IV are confirmed by IR spectroscopy and X-ray diffraction analysis (CIF files CCDC nos. 1906360 (I), 1906362 (II), 1906361 (III), 1906363 (IV), and 1906364 (V)). The X-ray diffraction data show that DAnH2 coordinates to the metal ions via the bidentate chelate mode, whereas (1,3-Вdc)2– coordinates to the metal ions via the bidentate bridging mode to form binuclear structures. As the most part of α-dioximes, one neutral DAnH2 coordinates to each metal atom by two nitrogen atoms, whereas two (1,3-Вdc)2– anions coordinate to the metal atom by one oxygen atom each. The coordination polyhedra of the metals in compounds IIIV are built up by the oxygen atoms of DMF and CH3OH.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Chugaev, L.A., Izbrannye trudy (Selected Works), vol. 1, Moscow: Izd. Akad. Nauk, 1954.

  2. 2

    Tschugaeff, L., Chem. Ber., 1907, vol. 40, p. 186.

  3. 3

    Ulpiani, C.P., Gazz. Chim. Ital., 1912, vol. 42, no. 1, p. 503.

  4. 4

    Forster, M.O., J. Chem. Soc., Abstrs., 1903, vol. 83, p. 514.

  5. 5

    Chakravorty, A., Coord. Chem. Rev., 1974, vol. 13, p. 1.

  6. 6

    Allen, F.H., Acta Crystallogr., Sect. B: Struct. Sci., 2002, vol. 58, p. 38.

  7. 7

    Godycki, L.E. and Rundle, R.E., Acta Crystallogr., 1953, vol. 6, no. 6, p. 487.

  8. 8

    Frasson, E., Bardi, R., and Bezzi, S., Acta Crystallogr., 1959, vol. 12, no. 3, p. 201.

  9. 9

    Bourosh, P., Bulhac, I., Covaci, O., et al., Russ. J. Coord. Chem., 2018, vol. 44, no. 8, p. 507. https://doi.org/10.1134/S1070328418080018

  10. 10

    Dvorkin, A.A., Simonov, Yu.A., Malinovskii, T.I., et al., Dokl. Akad. Nauk SSSR, 1977, vol. 234, no. 6, p. 1372.

  11. 11

    Bourosh, P.N., Coropceanu, E.B., Ciloci, A.A., et al., Russ. J. Coord. Chem., 2013, vol. 39, no. 11, p. 777. https://doi.org/10.1134/S107032841311002X

  12. 12

    Bourosh, P., Coropceanu, E., Rija, A., et al., J. Mol. Struct., 2011, vol. 998, nos. 1–3, p. 198.

  13. 13

    Batyr, D.G. and Kistruga, L.Ya., Koord. Khim., 1981, vol. 7, no. 2, p. 274.

  14. 14

    Simonov, Yu.A., Dvorkin, A.A., Malinovskii, T.I., et al., Koord. Khim., 1985, vol. 11, no. 11, p. 1554.

  15. 15

    Simonov, Yu.A., Botoshanskii, M.M., Malinovskii, T.I., et al., Dokl. Akad. Nauk SSSR, 1979, vol. 246, no. 3, p. 609.

  16. 16

    Simonov, Yu.A., Botoshanskii, M.M., Ozol L.D., et al., Koord. Khim., 1981, no. 4, p. 612.

  17. 17

    Ozol, L.D., Botoshanskii, M.M., Bulgak, I.I. et al., Zh. Neorg. Khim., 1980, vol. 25, no. 4, p. 1137.

  18. 18

    Simonov, Yu.A., Dvorkin, A.A., Malinovskii, T.I., et al., Dokl. Akad. Nauk SSSR, 1982, vol. 263, no. 5, p. 1135.

  19. 19

    Croitor, L., Coropceanu, E.B., Duca, Gh., et al., Polyhedron, 2017, vol. 129, p. 9.

  20. 20

    Coropceanu, E., Rija, A., Lozan, V., et al., Cryst. Growth Des., 2016, vol. 16, no. 2, p. 814.

  21. 21

    Coropceanu, E.B., Croitor, L., Botoshansky, M.M., and Fonari, M.S., Polyhedron, 2011, vol. 30, no. 15, p. 2592.

  22. 22

    Croitor, L., Coropceanu, E., Jeanneau, E., et al., Cryst. Growth Des., 2009, vol. 9, p. 5233.

  23. 23

    Coropceanu, E., Croitor, L., Siminel, A., et al., Polyhedron, 2016, vol. 109, p. 107.

  24. 24

    Margaritis, I.M., Winterlich, M., Efthymiou, C.G., et al., Polyhedron, 2018, vol. 151, p. 360.

  25. 25

    Çolak, A.T., Irez, G., Mutlu, H., et al., J. Coord. Chem., 2009, vol. 62, no. 6, p. 1005.

  26. 26

    Rija, A., Bulhac, I., Coropceanu, E., et al., Chem. J. Mold., 2011, vol. 6, no. 2, p. 73.

  27. 27

    Mercimek, B., Ozler, M.A., Ira, G., and Bekaroglu, O., Synth. React. Inorg. Met.-Org. Chem., 1999, vol. 29, no. 3, p. 513.

  28. 28

    Nogheu, L.N., Ghogomu, J.N., Mama, D.B., et al., Comput. Chem., 2016, vol. 4, p. 119.

  29. 29

    CrysAlis RED. O.D.L. Version 1.171.34.76, 2003.

  30. 30

    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, no. 1, p. 112.

  31. 31

    Bellamy, L.J., The Infrared Spectra of Complex Molecules, New York: Wiley, 1958.

  32. 32

    Gordon, A. and Ford, R., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1972.

  33. 33

    Nakanishi, K., Infrared Absorption Spectroscopy, San Francisco: Holden-Day, 1962.

  34. 34

    Nakamoto, K., Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

  35. 35

    Nakamoto, K., Infrared Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963.

  36. 36

    Durmus, M., Ahsen, V., Luneau, D., and Pecaut, J., Inorg. Chim. Acta, 2004, vol. 357, p. 588.

  37. 37

    Kakanejadifard, A. and Amani, V., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2008, vol. 64, p. o1512.

  38. 38

    Coropceanu, E.B., Croitor, L., Ciloci, A.A., et al., Russ. J. Coord. Chem., 2017, vol. 43, no. 5, p. 278. https://doi.org/10.1134/S1070328417050025

  39. 39

    Croitor, L., Coropceanu, E., Masunov, A., et al., J. Phys. Chem.C, 2014, vol. 118, p. 9217.

  40. 40

    Jurisson, S., Francesconi, L., Linder, K.E., et al., Inorg. Chem., 1991, vol. 30, p. 1820.

  41. 41

    Birkelbach, F., Florke, U., Haupt, H.-J., et al., Inorg. Chem., 1998, vol. 37, p. 2000.

  42. 42

    Hsieh, W.-Yu. and Liu, Sh., Inorg. Chem., 2006, vol. 45, p. 5034.

  43. 43

    Yan, Li., Li, Ch., and Chen, X., J. Mol. Struct., 2014, vol. 1058, p. 277.

  44. 44

    Jones, L.F., Prescimone, A., Evangelisti, M., and Brechin, E.K., Chem. Commun., 2009, p. 2023.

  45. 45

    Chen, Z., Hu, Zh., Li, Y., et al., Dalton Trans., 2016, vol. 45, p. 15634.

  46. 46

    Chen, Z., Jia, M., Zhang, Zh., and Liang, F., Cryst. Growth Des, 2010, vol. 10, p. 4806.

Download references

Author information

Correspondence to P. Bourosh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ureche, D., Bulhac, I., Rija, A. et al. Dianilineglyoxime Salt and Its Binuclear Zn(II) and Mn(II) Complexes with 1,3-Benzenedicarboxylic Acid: Synthesis and Structures. Russ J Coord Chem 45, 843–855 (2019). https://doi.org/10.1134/S107032841912008X

Download citation

Keywords:

  • coordination compounds of manganese and zinc
  • dianilineglyoxime
  • 1,3-benzenedicarboxylic acid
  • IR spectra
  • X-ray diffraction analysis