Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 12, pp 856–866 | Cite as

Cyclometalated Iridium(III) Complexes with a Norbornene-Substituted Picolinate Ligand and Electroluminescent Polymers Based on them

  • Yu. E. Begantsova
  • L. N. BochkarevEmail author
  • E. V. Baranov
  • V. A. Ilichev
Article
  • 9 Downloads

Abstract

New cyclometalated iridium(III) complexes, NBEpicIr(Ppy)2 (I) and NBEpicIr(Dfppy)2 (II), were synthesized (NBEpicH = 3-(((1S,4S)-bicyclo[2.2.1]hept-5-ene-2-carbonyl)oxy)picolinic acid, PpyH = 2-phenylpyridine, DfppyH = 2-(2,4-difluorophenyl)pyridine). Complex I was characterized by X‑ray diffraction analysis (CIF file CCDC no. 1878882). Ring opening metathesis polymerization involving compounds I and II and carbazole norbornene monomers gave new iridium-containing copolymers. The photophysical properties of complexes I and II and copolymers based on them were studied.

Keywords:

cyclometalated iridium complexes iridium-containing polymers metathesis polymerization photoluminescence electroluminescence 

Notes

ACKNOWLEDGMENTS

X-ray diffraction studies were carried out using the research equipment of the Center for Collective Use “Analytical Center of the Institute of Organometallic Chemistry, Russian Academy of Sciences.”

FUNDING

This work was performed within the State Assignment (subject no. 44.2, reg. no. AAAA-A16-116122110053-1).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Highly Efficient OLEDs with Phosphorescent Materials, Yersin, H., Ed., Weinheim: Wiley-VCH, 2008, p. 438.Google Scholar
  2. 2.
    Ulbricht, C., Beyer, B., Friebe, C., Winter, A., et al., Adv. Mater., 2009, vol. 21, p. 4418.CrossRefGoogle Scholar
  3. 3.
    Iridium(III) in Optoelectronic and Photonics Applications, Zysman-Colman, E., Ed., Chichester: Wiley-VCH, 2017, p. 736.Google Scholar
  4. 4.
    Yusoff, A.R.B.M., Huckaba, A.J., and Nazeeruddin, M.K., Top Curr. Chem. (Z), 2017, vol. 375, p. 39.CrossRefGoogle Scholar
  5. 5.
    Lee, S.Yu., Lee, S.E., Oh, Y.N., et al., J. Nanosci. Nanotechnol., 2017, vol. 17, p. 5673.CrossRefGoogle Scholar
  6. 6.
    Nanomaterials, Polymers and Devices: Materials Functionalization and Device Fabrication, Kong E.S.W., Ed., New Jersey: Wiley-VCH, 2015, p. 195.Google Scholar
  7. 7.
    Xua, F., Kima, H.U., Kima, J.-H., et al., Prog. Polym. Sci., 2015, vol. 47, p. 92.CrossRefGoogle Scholar
  8. 8.
    Jayabharathi, J., Jayamoorthy, K., and Thanikachalam, V., J. Organomet. Chem., 2014, vol. 761, p. 74.CrossRefGoogle Scholar
  9. 9.
    Liu, S.-J., Wang, P., Zhao, Q., et al., Adv. Mater., 2012, vol. 24, p. 2901.CrossRefGoogle Scholar
  10. 10.
    Liu, S., Qiao, W., Cao, G., et al., Macromol. Rapid Commun., 2013, vol. 34, p. 81.CrossRefGoogle Scholar
  11. 11.
    Nonoyama, M., Bull. Chem. Soc. Jpn., 1974, vol. 47, p. 767.CrossRefGoogle Scholar
  12. 12.
    Kwon, T.-H., Kim, M.K., Kwon, J., et al., Chem. Mater., 2007, vol. 19, p. 3673.CrossRefGoogle Scholar
  13. 13.
    Liaw, D.J. and Tsai, C.H., Polymer, 2000, vol. 41, p. 2773.CrossRefGoogle Scholar
  14. 14.
    Rozhkov, A.V., Bochkarev, L.N., Basova, G.V., et al., Russ. J. Gen. Chem., 2012, vol. 82, no. 12, p. 1895.CrossRefGoogle Scholar
  15. 15.
    Love, J.A., Morgan, J.P., Trnka, T.M., et al., Angew. Chem., Int. Ed. Engl., 2002, vol. 41, p. 4035.CrossRefGoogle Scholar
  16. 16.
    Magde, D., Wong, R., and Seybold, P.G., Photochem. Photobiol., 2002, vol. 75, p. 327.CrossRefGoogle Scholar
  17. 17.
    Demas, J.N. and Crosby, G.A., J. Phys. Chem., 1971, vol. 75, p. 991.CrossRefGoogle Scholar
  18. 18.
    SAINT. Data Reduction and Correction Program. Version 8.34A, Madison (WI, USA): Bruker AXS, 2014.Google Scholar
  19. 19.
    Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite, Madison: Bruker AXS, 2003.Google Scholar
  20. 20.
    Sheldrick, G.M., SADABS. Version 2014/5. Bruker/Siemens Area Detector Absorption Correction Program, Madison: Bruker AXS, 2014.Google Scholar
  21. 21.
    Janiak, C., Dalton Trans., 2000, p. 3885.Google Scholar
  22. 22.
    Grimsdale, A.C., Chan, K.L., Martin, R.E., et al., Chem. Rev., 2009, vol. 109, p. 897.CrossRefGoogle Scholar
  23. 23.
    Bochkarev, M.N., Vitukhnovskii, A.G., and Katkova, M.A., Organicheskie svetoizluchayushchie diody (OLED) (Organic Light-Emitting Diodes (OLEDs)), Nizhny Novgorod: Dekom, 2011.Google Scholar
  24. 24.
    Baranoff, E. and Curchod, B.F.E., Dalton Trans., 2015, vol. 44, p. 8318.CrossRefGoogle Scholar
  25. 25.
    You, Y., Kim, K.S., Ahn, T.K., et al., J. Phys. Chem. C, 2007, vol. 111, p. 4052.CrossRefGoogle Scholar
  26. 26.
    Yi, S., Kim, J.-H., Cho, Y.-J., et al., Inorg. Chem., 2016, vol. 55, p. 3324.CrossRefGoogle Scholar
  27. 27.
    Lamansky, S., Djurovich, P., Murphy, D., et al., Inorg. Chem., 2001, vol. 40, p. 1704.CrossRefGoogle Scholar
  28. 28.
    Zhao, Q., Liu, S.J., Shi, M., et al., Inorg. Chem., 2006, vol. 45, p. 6152.CrossRefGoogle Scholar
  29. 29.
    Hao, Z., Jiang, H., Liu, Y., et al., Tetrahedron, 2016, vol. 72, p. 8542.CrossRefGoogle Scholar
  30. 30.
    Johnson, G.E., J. Chem. Phys., 1975, vol. 62, p. 4697.CrossRefGoogle Scholar
  31. 31.
    Vekikouas, G.E. and Powell, R.C., Chem. Phys. Lett., 1975, vol. 34, p. 601.CrossRefGoogle Scholar
  32. 32.
    Förster, T., Disc. Faraday Soc., 1959, vol. 27, p. 7.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. E. Begantsova
    • 1
  • L. N. Bochkarev
    • 1
    Email author
  • E. V. Baranov
    • 1
  • V. A. Ilichev
    • 1
  1. 1.G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations