Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 12, pp 889–898 | Cite as

Tin(IV) Complexes with Salen Type Schiff base: Synthesis, Spectroscopic Characterization, Crystal Structure, Antibacterial Screening and Cytotoxicity

  • S. Ali
  • T. Ara
  • M. Danish
  • S. ShujahEmail author
  • A. M. Z. Slawin
Article
  • 13 Downloads

Abstract

A series of six tin(IV) complexes [SnCl2(L) (I), Me2Sn(L) (II), Bu2Sn(L) (III), Ph2Sn(L) (IV), Oct2Sn(L) (V), BuSnCl(L) (VI)] derived from N,N'-bis(2-hydroxy-1-naphthylidene)-1,2-diaminobenzene [LH2] have been synthesized. The obtained compounds were characterized by elemental analysis, mass spectrometry, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of compounds (IV) and (VI) have also been determined by single crystal X-ray analysis (CIF files CCDC nos. 856596 (IV) and 856595 (VI)). The study revealed that the complexes exist as discrete monomeric species and the tin atom is hexa-coordinated in a distorted octahedral geometry. The two phenyl groups in compound (IV) are at trans-positions. Similarly, in complex (VI) the butyl and chloro groups also adopt trans-orientation. The in vitro antibacterial screening and cytotoxicity investigations revealed that the biological activities significantly depend upon the alkyl or others groups present on tin atom. Most of the tin(IV) complexes are active against Escherichia coli and highest activity is shown by complex (IV) against Bacillus subtilis. Furthermore, complex (IV) has also demonstrated the highest cytotoxicity against brine shrimp with LD50 value 0.858 μg/mL.

Keywords:

organotin(IV) Schiff base X-ray structure antibacterial activity cytotoxicity 

REFERENCES

  1. 1.
    Singh, K., Kumar, Y., Puri, P., Kumar, M., and Sharma, C., Eur. J. Med. Chem., 2012, vol. 52, p. 313.CrossRefGoogle Scholar
  2. 2.
    Gupta, V.K., Singh, A.K., Ganjali, M.R., Norouzi, P., Faridbod, F., and Mergu, N., Sensors and Actuators B: Chemical, 2013, vol. 182, p. 642.CrossRefGoogle Scholar
  3. 3.
    Mogorosi, M.M., Mahamo, T., Moss, J.R., Mapolie, S.F., Slootweg, J.C., Lammertsma, K., and Smith, G.S., J. Organomet. Chem., 2011, vol. 696, no. 23, p. 3585.CrossRefGoogle Scholar
  4. 4.
    Ding, F., Doorslaer, S.V., Cool, P., and Verpoort, F., Appl. Organomet. Chem., 2011, vol. 25, no. 8, p. 601.CrossRefGoogle Scholar
  5. 5.
    De Clercq, B. and Verpoort, F., J. Mol. Catal. A: Chem., 2002, vol. 180, no. 1, p. 67.CrossRefGoogle Scholar
  6. 6.
    Dubey, R.K., Singh, A.P., and Patil, S.A., Inorg. Chim. Acta, 2014, vol. 410, suppl. C, p. 39 .Google Scholar
  7. 7.
    Kumari, R. and Nath, M., Appl. Organomet. Chem., 2017, vol. 31, no. 8. e3661.Google Scholar
  8. 8.
    Cheng, J., Wei, K., Ma, X., Zhou, X., and Xiang, H., J. Phys. Chem., C, 2013, vol. 117, no. 32, p. 16552.CrossRefGoogle Scholar
  9. 9.
    Naik, A.D., Fontaine, G.L., Bellayer, S., and Bourbigot, S., ACS Applied Materials & Interfaces, 2015, vol. 7, no. 38, p. 21208.CrossRefGoogle Scholar
  10. 10.
    Vandenbergen, A., Cashion, J., Fallon, G., and West, B., Aust. J. Chem., 1990, vol. 43, no. 9, p. 1559.CrossRefGoogle Scholar
  11. 11.
    Muñoz-Flores, B.M., Santillan, R., Farfan, N., et al., J. Organomet. Chem., 2014, vol. 769, p. 64.CrossRefGoogle Scholar
  12. 12.
    Darensbourg, D.J., Ganguly, P., and Billodeaux, D., Macromolecules, 2005, vol. 38, no. 13, p. 5406.CrossRefGoogle Scholar
  13. 13.
    Jing, H., Edulji, S.K., Gibbs, J.M., et al., Inorg. Chem., 2004, vol. 43, no. 14, p. 4315.CrossRefGoogle Scholar
  14. 14.
    Dey, D.K., Das, M. K. and Noth, H., Z. Naturforsch., B, 1999, vol. 54, no. 2, p. 145.CrossRefGoogle Scholar
  15. 15.
    Armarego, W.L. and Chai, C.L.L., Purification of Laboratory Chemicals, Butterworth-Heinemann, 2013.Google Scholar
  16. 16.
    Labisbal, E., Rodríguez, L., Sousa-Pedrares, A., et al., J. Organomet. Chem., 2006, vol. 691, no. 7, p. 1321.CrossRefGoogle Scholar
  17. 17.
    Sheldrick, G., SHELXTL 6.14, Madison: Bruker AXS, 2004.Google Scholar
  18. 18.
    Rehman, W., Baloch, M.K., and Badshah, A., Eur. J. Med. Chem., 2008, vol. 43, no. 11, p. 2380.CrossRefGoogle Scholar
  19. 19.
    Atta-ur-Rahman, C.M. and Thomsen, W.J., Bioassay Techniques for Drug Development, Harwood Academic, 2001.CrossRefGoogle Scholar
  20. 20.
    Finney, D., Probit Analysis, Cambridge University, 1971.Google Scholar
  21. 21.
    Tan, Y.-X., Zhang, Z.-J., Liu, Y., et al., J. Mol. Struct., 2017, vol. 1149, suppl. C, p. 874.Google Scholar
  22. 22.
    Shujah, S., Zia-Ur-Rehman, Muhammad, N., et al., J. Organomet. Chem., 2014, vol. 759, p. 19.CrossRefGoogle Scholar
  23. 23.
    Shujah, S., Khalid, N., and Ali, S., Russ. J. Gen. Chem., 2017, vol. 87, no. 3, p. 515.CrossRefGoogle Scholar
  24. 24.
    Shahzadi, S., Ali, S., Shahid, K., et al., Phosphorus Sulfur., 2010, vol. 185, no. 10, p. 2045.CrossRefGoogle Scholar
  25. 25.
    Sirajuddin, M., Ali, S., Shah, F.A., et al., J. Iran. Chem. Soc., 2014, vol. 11, no. 2, p. 297.CrossRefGoogle Scholar
  26. 26.
    Hong, M., Yin, H., Zhang, X., et al., J. Organomet. Chem., 2013, vol. 724, p. 23.CrossRefGoogle Scholar
  27. 27.
    Shujah, S., Ali, S., Khalid, N., and Meetsma, A., J. Iran. Chem. Soc., 2017, vol. 14, no. 12, p. 2567.CrossRefGoogle Scholar
  28. 28.
    Muhammad, N., Zia-Ur-Rehman, Shujah, S., et al., J. Coord. Chem., 2012, vol. 65, no. 21, p. 3766.CrossRefGoogle Scholar
  29. 29.
    Dey, D.K., Saha, M.K., Das, M.K., et al., Polyhedron, 1999, vol. 18, no. 20, p. 2687.CrossRefGoogle Scholar
  30. 30.
    Gericke, R. and Wagler, J., Main Group Met. Chem., 2014, vol. 37, p. 1.CrossRefGoogle Scholar
  31. 31.
    Wang, Q., Ding, R., Аng, N., et al., Z. Anorg. Allg. Chem., 2010, vol. 636, no. 5, p. 861.CrossRefGoogle Scholar
  32. 32.
    Teoh, S.-G., Yeap, G.-Y., Loh, C.-C., et al., Polyhedron, 1997, vol. 16, no. 13, p. 2213.CrossRefGoogle Scholar
  33. 33.
    Yearwood, B., Parkin, S., and Atwood, D.A., Inorg. Chim. Acta, 2002, vol. 333, no. 1, p. 124.CrossRefGoogle Scholar
  34. 34.
    Carcelli, M., Corazzari, G., Ianelli, S., et al., Inorg. Chim. Acta, 2003, vol. 353, p. 310.CrossRefGoogle Scholar
  35. 35.
    Shujah, S., Zia-Ur-Rehman, Muhammad, N., et al., J. Organomet. Chem., 2011, vol. 696, no. 15, p. 2772.CrossRefGoogle Scholar
  36. 36.
    Shujah, S., Zia-Ur-Rehman, Muhammad, N., et al., J. Organomet. Chem., 2013, vols. 741−742, p. 59.CrossRefGoogle Scholar
  37. 37.
    Nath, M., Appl. Organomet. Chem., 2008, vol. 22, no. 10, p. 598.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Ali
    • 1
  • T. Ara
    • 1
  • M. Danish
    • 2
  • S. Shujah
    • 3
    Email author
  • A. M. Z. Slawin
    • 4
  1. 1.Department of Chemistry, Quaid-e-Azam UniversityIslamabadPakistan
  2. 2.Department of Chemistry, University of GujratGujratPakistan
  3. 3.Department of Chemistry, Kohat University of Science and TechnologyKohatPakistan
  4. 4.Molecular Structure Laboratory, School of Chemistry, University of St AndrewsSt AndrewsUK

Personalised recommendations