Advertisement

Russian Journal of Coordination Chemistry

, Volume 45, Issue 11, pp 776–781 | Cite as

Binuclear Oxidovanadium(IV) Complex with the Bridging Chloranilate Ligand: Synthesis and Magnetic Properties

  • I. S. Fomenko
  • V. A. Nadolinnyi
  • N. N. Efimov
  • V. V. Kokovkin
  • A. L. GushchinEmail author
Article
  • 17 Downloads

Abstract

The binuclear oxidovanadium(IV) complex [VO(Dbbpy)Cl(Ca)Cl(Dbbpy)VO] (I) is synthesized by the reaction of [VO(Dbbpy)(H2O)Cl2] (Dbbpy is 4,4'-di-tert-butyl-2,2'-bipyridyl) with chloranilic acid H2Ca in acetonitrile in the presence of Et3N in a yield of 79%. Complex I is reduced at Е1/2 = –842 mV (vs. Ag/AgCl), which is shown by cyclic voltammetry for a solid sample using the paste electrode. The EPR spectra and magnetochemical measurements for complex I confirm the existence of two paramagnetic vanadium(IV) centers with the total spin S = 1 and the antiferromagnetic character of the exchange interaction between the centers.

Keywords:

oxidovanadium(IV) chloranilic acid magnetic susceptibility voltammetry EPR spectroscopy 

Notes

FUNDING

The works on the synthesis and characterization of compound I were supported by the Russian Foundation for Basic Research, project no. 18-03-00155. The study of the magnetic properties was supported by the Russian Science Foundation, project no. 16-13-10407.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    Galloni, P. and Floris, B., Coord. Chem., 2015, vols. 301–302, p. 240.CrossRefGoogle Scholar
  2. 2.
    Sutradhar, M., Martins, L.M.D.R.S., Guedes da Silva, M.F.C., and Pombeiro, A.J.L., Coord. Chem. Rev., 2015, vols. 301–302, p. 200.CrossRefGoogle Scholar
  3. 3.
    Langeslay, R.R., Kaphan, D.M., Marshall, C.L., et al., Chem. Rev., 2019, vol. 119, no. 4, p. 2128.PubMedCrossRefGoogle Scholar
  4. 4.
    Nomura, K. and Zhang, S., Chem. Rev., 2011, vol. 111, no. 3, p. 2342.PubMedCrossRefGoogle Scholar
  5. 5.
    Wischang, D., Brucher, O., and Hartung, J., Coord. Chem. Rev., 2011, vol. 255, nos. 19–20, p. 2204.CrossRefGoogle Scholar
  6. 6.
    Butler, A. and Carter-Franklin, J.N., Nat. Prod. Rep., 2004, vol. 21, no. 1, p. 180.PubMedCrossRefGoogle Scholar
  7. 7.
    Butler, A., Coord. Chem. Rev., 1999, vol. 187, no. 1, p. 17.CrossRefGoogle Scholar
  8. 8.
    Rehder, D., Santoni, G., Licini, G.M., et al., Coord. Chem. Rev., 2003, vol. 237, nos. 1–2, p. 53.CrossRefGoogle Scholar
  9. 9.
    Rehder, D., Bioinorganic Vanadium Chemistry, New York: Wiley, 2008.CrossRefGoogle Scholar
  10. 10.
    Hales, B.J., Case, E.E., Morningstar, J.E., et al., Biochemistry, 1986, vol. 25, no. 23, p. 7251.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Robson, R.L., Robson, R.L., Eady, R.R., et al., Nature, 1986, vol. 322, no. 6077, p. 388.CrossRefGoogle Scholar
  12. 12.
    Shul’pin, G.B., Mishra, G.S., Shul’pina, L.S., et al., Catal. Commun., 2007, vol. 8, no. 10, p. 1516.CrossRefGoogle Scholar
  13. 13.
    Romakh, V.B., Süss-Fink, G., and Shul’pin, G.B., Pet. Chem., 2008, vol. 48, no. 6, p. 440.CrossRefGoogle Scholar
  14. 14.
    Shul’pina, L.S., Kirillova, M.V., Pombeiro, A.J.L., and Shul’pin, G.B., Tetrahedron, 2009, vol. 65, no. 12, p. 2424.CrossRefGoogle Scholar
  15. 15.
    Kirillova, M.V., Kuznetsov, M.L., Romakh, V.B., et al., J. Catal., 2009, vol. 267, no. 2, p. 140.CrossRefGoogle Scholar
  16. 16.
    Kirillova, M.V., Kuznetsov, M.L., Kozlov, Y.N., et al., ACS Catal., 2011, vol. 1, no. 11, p. 1511.CrossRefGoogle Scholar
  17. 17.
    Gusevskaya, E.V., Menini, L., Parreira, L.A., et al., J. Mol. Catal. A, 2012, vols. 363–364, p. 140.CrossRefGoogle Scholar
  18. 18.
    Sutradhar, M., Shvydkiy, N.V., Guedes da Silva, M.F.C., et al., Dalton Trans., 2013, vol. 42, no. 33, p. 11791.PubMedCrossRefGoogle Scholar
  19. 19.
    Gryca, I., Czerwin'ska, K., Machura, B., et al., Inorg. Chem., 2018, vol. 57, no. 4, p. 1824.PubMedCrossRefGoogle Scholar
  20. 20.
    Brücher, O. and Hartung, J., ACS Catal., 2011, vol. 1, no. 11, p. 1448.CrossRefGoogle Scholar
  21. 21.
    Kikushima, K., Moriuchi, T., and Hirao, T., Tetrahedron, 2010, vol. 66, no. 34, p. 6906.CrossRefGoogle Scholar
  22. 22.
    Maurya, M.R., Chaudhary, N., and Avecilla, F., Polyhedron, 2014, vol. 67, p. 436.CrossRefGoogle Scholar
  23. 23.
    Galloni, P., Mancini, M., Floris, B., and Conte, V., Dalton Trans., 2013, vol. 42, no. 33, p. 11963.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Grivani, G., Tahmasebi, V., and Khalaji, A.D., Polyhedron, 2014, vol. 68, p. 144.CrossRefGoogle Scholar
  25. 25.
    Zhang, R., Liu, J., Chen, C., et al., Spectrochim. Acta, Part A, 2013, vol. 115, p. 476.CrossRefGoogle Scholar
  26. 26.
    Hall, N., Orio, M., Jorge-Robin, A., et al., Inorg. Chem., 2013, vol. 52, no. 23, p. 13424.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Barman, S., Patil, S., Desper, J., et al., Eur. J. Inorg. Chem., 2013, vol. 2013, no. 33, p. 5708.CrossRefGoogle Scholar
  28. 28.
    Maurya, M.R., Bisht, M., Chaudhary, N., et al., Polyhedron, 2013, vol. 54, p. 180.CrossRefGoogle Scholar
  29. 29.
    Maurya, M.R., Bisht, M., and Avecilla, F., J. Mol. Catal. A: Chem., 2011, vol. 344, nos. 1–2, p. 18.CrossRefGoogle Scholar
  30. 30.
    Romanowski, G. and Kira, J., Polyhedron, 2013, vol. 53, p. 172.CrossRefGoogle Scholar
  31. 31.
    Maurya, M.R., Saini, P., Kumar, A., and Costa Pessoa, J., Eur. J. Inorg. Chem., 2011, vol. 2011, no. 31, p. 4846.CrossRefGoogle Scholar
  32. 32.
    Jin, W.-T., Weng, W.-Z., and Zhou, Z.-H., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 9, p. 1228.CrossRefGoogle Scholar
  33. 33.
    Zeng, Q., Gao, Y., Dong, J., et al., Tetrahedron: Asymmetry, 2011, vol. 22, no. 7, p. 717.CrossRefGoogle Scholar
  34. 34.
    Maurya, M.R., Arya, A., Kumar, A., et al., Inorg. Chem., 2010, vol. 49, no. 14, p. 6586.PubMedCrossRefGoogle Scholar
  35. 35.
    Ogunlaja, A.S., Chidawanyika, W., Antunes, E., et al., Dalton Trans., 2012, vol. 41, no. 45, p. 13908.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu, Y., Mao, F., Meng, F., and Li, X., Adv. Synth. Catal., 2011, vol. 353, no. 10, p. 1707.CrossRefGoogle Scholar
  37. 37.
    Walmsley, R.S., Chigome, S., Torto, N., and Tshentu, Z.R., Catal. Lett., 2012, vol. 142, no. 2, p. 243.CrossRefGoogle Scholar
  38. 38.
    Stingl, K.A., Weiss, K.M., and Tsogoeva, S.B., Tetrahedron, 2012, vol. 68, no. 40, p. 8493.CrossRefGoogle Scholar
  39. 39.
    Romanowski, G. and Lis, T., Inorg. Chim. Acta, 2013, vol. 394, p. 627.CrossRefGoogle Scholar
  40. 40.
    Barroso, S., Adão, P., Madeira, F., et al., Inorg. Chem., 2010, vol. 49, no. 16, p. 7452.PubMedCrossRefGoogle Scholar
  41. 41.
    Pessoa, J.C., Etcheverry, S., and Gambino, D., Coord. Chem. Rev., 2015, vols. 301–302, p. 24.CrossRefGoogle Scholar
  42. 42.
    Kioseoglou, E., Petanidis, S., Gabriel, C., and Salifoglou, A., Coord. Chem. Rev., 2015, vols. 301–302, p. 87.CrossRefGoogle Scholar
  43. 43.
    Fomenko, Y.S., Gushchin, A.L., Tkachev, A.V., et al., Polyhedron, 2017, vol. 135, p. 96.CrossRefGoogle Scholar
  44. 44.
    Fomenko, I.S., Gushchin, A.L., Shul’pina, L.S., et al., New J. Chem., 2018, vol. 42, no. 19, p. 16200.CrossRefGoogle Scholar
  45. 45.
    Chatterjee, P.B., Bhattacharya, K., Kundu, N., et al., Inorg. Chem., 2009, vol. 48, no. 3, p. 804.PubMedCrossRefGoogle Scholar
  46. 46.
    Bazhina, E.S., Nikiforova, M.E., Aleksandrov, G.G., et al., Inorg. Chim. Acta, 2012, vol. 392, p. 192.CrossRefGoogle Scholar
  47. 47.
    Bazhina, E.S., Aleksandrov, G.G., Kiskin, M.A., et al., Polyhedron, 2017, vol. 137, p. 246.CrossRefGoogle Scholar
  48. 48.
    Moreno, Y., Vega, A., Ushak, S., et al., J. Mater. Chem., 2003, vol. 13, no. 9, p. 2381.CrossRefGoogle Scholar
  49. 49.
    Marino, N., Lloret, F., Julve, M., and Doyle, R.P., Dalton Trans., 2011, vol. 40, no. 45, p. 12248.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhimin, D., Zhan, S., Guanghua, L., et al., Inorg. Chem., 2003, vol. 42, p. 7396.CrossRefGoogle Scholar
  51. 51.
    Kawasaki, S., Koikawa, M., and Tokii, T., Mol. Cryst. Liq. Cryst., 2002, vol. 376, no. 1, p. 365.CrossRefGoogle Scholar
  52. 52.
    Matsuoka, N., Kawamura, H., and Yoshioka, N., Chem. Phys. Lett., 2010, vol. 488, nos. 1–3, p. 32.CrossRefGoogle Scholar
  53. 53.
    Drake, R.F., Crawford, V.H., Hatfield, W.E., et al., J. Inorg. Nucl. Chem., 1975, vol. 37, no. 1, p. 291.CrossRefGoogle Scholar
  54. 54.
    Tsuchimoto, M. and Yoshioka, N., Chem. Phys. Lett., 1998, vol. 287, p. 115.CrossRefGoogle Scholar
  55. 55.
    Rodríguez-Fortea, A., Alemany, P., Alvarez, S., and Ruiz, E., Eur. J. Inorg. Chem., 2004, vol. 2004, no. 1, p. 143.CrossRefGoogle Scholar
  56. 56.
    Plass, W., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, no. 6, p. 627.CrossRefGoogle Scholar
  57. 57.
    Zakharchuk, N.F., Meyer, B., Henning, H., et al., J. Electroanal. Chem., 1995, vol. 398, nos. 1–2, p. 23.CrossRefGoogle Scholar
  58. 58.
    Fomenko, I., Gushchin, A., Abramov, P., et al., Catalysts, 2019, vol. 9, no. 3, p. 217.CrossRefGoogle Scholar
  59. 59.
    Min, K.S., DiPasquale, A., Rheingold, A.L., and Miller, J.S., Inorg. Chem., 2007, vol. 46, no. 4, p. 1048.PubMedCrossRefGoogle Scholar
  60. 60.
    Guo, D. and McCusker, J.K., Inorg. Chem., 2007, vol. 46, no. 8, p. 3257.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Min, K.S., Rheingold, A.L., DiPasquale, A., and Miller, J.S., Inorg. Chem., 2006, vol. 45, no. 16, p. 6135.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kitagawa, S. and Kawata, S., Coord. Chem. Rev., 2002, vol. 224, nos. 1–2, p. 11.CrossRefGoogle Scholar
  63. 63.
    Min, K.S., DiPasquale, A.G., Golen, J.A., et al., J. Am. Chem. Soc., 2007, vol. 129, no. 8, p. 2360.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Gushchin, A.L., Laricheva, Y.A., Abramov, P.A., et al., Eur. J. Inorg. Chem., 2014, vol. 2014, no. 25, p. 4093.CrossRefGoogle Scholar
  65. 65.
    Kaim, W., Inorg. Chem., 2011, vol. 50, no. 20, p. 9752.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kaim, W. and Schwederski, B., Coord. Chem. Rev., 2010, vol. 254, nos. 13–14, p. 1580.CrossRefGoogle Scholar
  67. 67.
    Gushchin, A.L., Sokolov, M.N., Peresypkina, E.V., et al., Eur. J. Inorg. Chem., 2008, vol. 2008, no. 25, p. 3964.CrossRefGoogle Scholar
  68. 68.
    Gushchin, A.L., Laricheva, Y.A., Piryazev, D.A., and Sokolov, M.N., Russ. J. Coord. Chem., 2014, vol. 40, no. 1, p. 5. https://doi.org/10.1134/S1070328414010023 CrossRefGoogle Scholar
  69. 69.
    Zhu, H., Chen, C., Zhang, X., et al., Inorg. Chim. Acta, 2002, vol. 328, no. 1, p. 96.CrossRefGoogle Scholar
  70. 70.
    Hongping, Z., Liu, Q., Xiaoying, H., et al., Inorg. Chem. A, 1998, vol. 37, no. 11, p. 2678.CrossRefGoogle Scholar
  71. 71.
    Chilton, N.F., Anderson, R.P., Turner, L.D., et al., J. Comput. Chem., 2013, vol. 34, no. 13, p. 1164.PubMedCrossRefGoogle Scholar
  72. 72.
    Apostolopoulou, A., Vlasiou, M., Tziouris, P.A., et al., Inorg. Chem., 2015, vol. 54, no. 8, p. 3979.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. S. Fomenko
    • 1
  • V. A. Nadolinnyi
    • 1
  • N. N. Efimov
    • 2
  • V. V. Kokovkin
    • 1
    • 3
  • A. L. Gushchin
    • 1
    • 3
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations